Jinja Documentation (2.11.x)
Release 2.11.2

Pallets

Apr 13, 2020

CONTENTS:

1 Introduction 3
1.1 PrerequiSites o i e e e e e e e e 3
1.2 Installation e e e e e e e e e 3
1.3 Basic APIUSage o i it e e 4
2 API 5
2.1 BasiCS. e e e e e 5
2.2 Unicode ot e e e 6
2.3 HighLevel APL. e e e e e e 6
2.4 AUOESCAPING . . . v v i e 12
2.5 Notesonldentifiers. e e e 13
2.6 Undefined Types o o o i i e e e e e e e e 14
2.7 The ConteXxt o i i e e e e 16
2.8 Loaders e e e 17
2.9 Bytecode Cache e e e e 19
210 ASync SUPPOTt . . . o L e e e e e e e e e e e e e e e e e e 21
2. 11 Policies e e e e e 22
212 UHHHES o o o e e 23
213 EXCEPHONS . o . v v o v e i e 25
2.14 Custom Filters o e e 25
2.15 Evaluation Context o i v i e 26
2.16 Custom Tests e e e e e e e e 27
2.17 The Global Namespace e 28
218 Low Level API e 28
2.19 The Meta APL e e e 29
3 Sandbox 31
3.1 APL . e e 31
3.2 Operator Intercepting v v v i i e e e e e e e e e e e e e e e e e e e 33
4 Native Python Types 35
4.1 Examples e e e e e e e e e e e e e e e 35
42 APL . . e 36
5 Template Designer Documentation 37
5.1 SYnopsis ... e e e e e e e e e e e e e e 37
5.2 Variables e e e e e e s 38
53 FIters e e e e e e e e 39
54 Tests ... e e e e e e e e e e e e 39
5.5 CommentS i i i e e e e e e e e e e e e e e e e e 39

10

11

5.6 Whitespace Control e e e e e e e e e e e e
5.7 ESCAPING . . o o i e e e e e e e e e e e e e e e e e e e
5.8 Line Statements L e e e e e e e e e e e e e e e e e e e
5.9 Template Inheritanceo e
5.10 HTML Escaping o o v it e e e e e e e e e e e e e
5.11 Listof Control Structures i i e e e e e e e e e e e e e e e
5.12 TImport Context Behavior e e e e
5.3 EXPIressions o it e e e e e e e e e e e e e e e e e e e
5.14 Listof Builtin Filters 0 . o e e e e
5.15 Listof Builtin Tests o e e e
5.16 Listof Global Functions e e e e e e e e e
507 EXteNsiONS . . ¢ v v v vt e e e e e e e e e e e e e e e e e e
5.18 Autoescape OVerrides v i i e e e e e e e e e e e e e

Extensions

6.1 Adding EXtensions e e e e e e e e e e e
6.2 I8N EXtension e e e e
6.3 Expression Statement Lo e e e e e e e e e e
6.4 LoopControls L e e e e e e e
6.5 With Statement e e e e
6.6 Autoescape EXtension e e e e e e e e e e
6.7 Debug EXtension e e e e e e e e e e e e
6.8 Writing Extensions L e
6.9 Example Extensions e
6.10 Extension APL e

Integration

7.1 BabelIntegration L e e e e e e e e e e
T2 Pylons . ..o e e e e e
T3 TextMate o o e e e e e e e e
T4 VIM . Lo oo e

Switching from other Template Engines

8.1 Jinjal. . o o e e e e e e e e e
82 Djangoo e e e e e
83 Mako e

Tips and Tricks

9.1 Null-Master Fallback
9.2 Alternating Rows L e
9.3 Highlighting Active Menu Items L e
9.4 Accessingthe parent Loop e

Frequently Asked Questions

10.1 Why isitcalled Jinja? o e e e e e e e e e
10.2 How fastisit? o o e e e e e e
10.3 How Compatible is Jinja with Django? e
10.4 TIsn’tit a terrible idea to put Logic into Templates?
10.5 Why is Autoescaping not the Default? o oL o
10.6 Why is the Context immutable? e
10.7 My tracebacks look weird. What’s happening? Lo oL
10.8 Why is there no Python 2.3/2.4/2.5/2.6/3.1/3.2/3.3 support?
10.9 My Macros are overridden by something L .

Changelog

57

75
75
75
77
77
77
77
78
78
78
81

93
93
93
94
94

95
95
96
97

99
99
99
99
100

101
101
101
101
102
102
102
103
103
103

105

11.1 Version 2.11.2 . . . o . o e e e e e e e e e e
11.2 Version 2.11.1 o e e
11.3 Version 2.11.0 o . e e e e
11.4 Version 2.10.3 L e e e e e e
11.5 Version 2.10.2 L e e
11.6 Version 2.10.1 e e
11.7 Version 2.10 e e e
I1.8 Version 2.9.6 e
11.9 Version 2.9.5 L e e e e e e e e e
11.10 Version 2.9.4 e e e e e e e e
I1.11 Version 2.9.3 . . . L . L e e
1112 Version 2.9.2 o o e e e
1113 Version 2.9.1 o o e e e e
I1.14 Version 2.9 e e e e e e
1115 Version 2.8.1 o e e e e e e e e e e
11.16 Version 2.8 e e e e e e e
11.17 Version 2.7.3 o o e e e e e e e e e e e e
T1.18 Version 2.7.2 o o e e e e e e e e e
1119 Version 2.7.1 o o e e e e e e e e e
11.20 Version 2.7 o o e e e e e e e e e e e e e e e
T1.21 Version 2.6 o e e e e e e e e e e e e e e e
11.22 Version 2.5.5 o o e e e
11.23 Version 2.5.4 o e e e e e e
11.24 Version 2.5.3 e e e e e e
11.25 Version 2.5.2 o e e e e e e e e e e e e e e e e e
11.26 Version 2.5.1 e e e e e e
T1.27 Version 2.5 o o e e e e e
11.28 Version 2.4.1 o o o e
11.20 Version 2.4 o o e e e e e e e e e
11.30 Version 2.3.1 o o e e e e e e
11.31 Version 2.3 o e e e e e e e e e
11.32 Version 2.2.1 o o o o e e e
11.33 Version 2.2 o e e e e e e e e e e e e
11.34 Version 2.1.1 o o o e e e e e e
1135 Version 2.1 o o o e e e e
11.36 Version 2.0 o e e e e e e e e

Python Module Index

Index

Jinja Documentation (2.11.x), Release 2.11.2

Jinja is a modern and designer-friendly templating language for Python, modelled after Django’s templates. It is fast,
widely used and secure with the optional sandboxed template execution environment:

<title>{% block title %}{% endblock %j)</title>

{% for user in users %}
{{ user.username }j}
% endfor %}

Features:
 sandboxed execution
e powerful automatic HTML escaping system for XSS prevention
* template inheritance
» compiles down to the optimal python code just in time
* optional ahead-of-time template compilation
* easy to debug. Line numbers of exceptions directly point to the correct line in the template.

* configurable syntax

CONTENTS: 1

https://palletsprojects.com/p/jinja/

Jinja Documentation (2.11.x), Release 2.11.2

2 CONTENTS:

CHAPTER
ONE

INTRODUCTION

This is the documentation for the Jinja general purpose templating language. Jinja is a library for Python that is
designed to be flexible, fast and secure.

If you have any exposure to other text-based template languages, such as Smarty or Django, you should feel right at
home with Jinja. It’s both designer and developer friendly by sticking to Python’s principles and adding functionality
useful for templating environments.

1.1 Prerequisites

Jinja works with Python 2.7.x and >= 3.5. If you are using Python 3.2 you can use an older release of Jinja (2.6) as
support for Python 3.2 was dropped in Jinja version 2.7. The last release which supported Python 2.6 and 3.3 was Jinja
2.10.

If you wish to use the PackageLoader class, you will also need setuptools or distribute installed at runtime.

1.2 Installation

You can install the most recent Jinja version using pip:

’pip install Jinja2

This will install Jinja in your Python installation’s site-packages directory.

1.2.1 Installing the development version

1. Install git

2. git clone git://github.com/pallets/Jjinja.git
3. ¢d jinja2

4. 1In -s Jjinja2 /usr/lib/python2.X/site-packages

As an alternative to steps 4 you can also do python setup.py develop which will install the package via
distribute in development mode. This also has the advantage that the C extensions are compiled.

https://pypi.org/project/setuptools/
https://pypi.org/project/distribute/
https://pypi.org/project/pip/
https://git-scm.com/

Jinja Documentation (2.11.x), Release 2.11.2

1.2.2 MarkupSafe Dependency

As of version 2.7 Jinja depends on the MarkupSafe module. If you install Jinja via pip it will be installed automati-
cally for you.

1.3 Basic APl Usage

This section gives you a brief introduction to the Python API for Jinja templates.

The most basic way to create a template and render it is through Template. This however is not the recommended
way to work with it if your templates are not loaded from strings but the file system or another data source:

>>> from jinja2 import Template

>>> template = Template('Hello {{ name }}!")
>>> template.render (name="'John Doe')

u'Hello John Doe!'’

By creating an instance of Template you get back a new template object that provides a method called render ()
which when called with a dict or keyword arguments expands the template. The dict or keywords arguments passed to
the template are the so-called “context” of the template.

What you can see here is that Jinja is using unicode internally and the return value is an unicode string. So make sure
that your application is indeed using unicode internally.

4 Chapter 1. Introduction

https://markupsafe.palletsprojects.com/

CHAPTER
TWO

API

This document describes the API to Jinja and not the template language (for that, see Template Designer Documenta-
tion). It will be most useful as reference to those implementing the template interface to the application and not those
who are creating Jinja templates.

2.1 Basics

Jinja uses a central object called the template Fnvironment. Instances of this class are used to store the configuration
and global objects, and are used to load templates from the file system or other locations. Even if you are creating
templates from strings by using the constructor of Template class, an environment is created automatically for you,
albeit a shared one.

Most applications will create one Environment object on application initialization and use that to load templates.
In some cases however, it’s useful to have multiple environments side by side, if different configurations are in use.

The simplest way to configure Jinja to load templates for your application looks roughly like this:

from jinja2 import Environment, Packageloader, select_autoescape

env = Environment (
loader=Packageloader ('yourapplication', 'templates'),
autoescape=select_autoescape (['html', 'xml'])

This will create a template environment with the default settings and a loader that looks up the templates in the
templates folder inside the yourapplication python package. Different loaders are available and you can also write
your own if you want to load templates from a database or other resources. This also enables autoescaping for HTML
and XML files.

To load a template from this environment you just have to call the get_template () method which then returns the
loaded Template:

’template = env.get_template ('mytemplate.html")

To render it with some variables, just call the render () method:

’print(template.render(the:'variables', go='here'))

Using a template loader rather than passing strings to Template or Environment . from_string () has multi-
ple advantages. Besides being a lot easier to use it also enables template inheritance.

Notes on Autoescaping

Jinja Documentation (2.11.x), Release 2.11.2

In future versions of Jinja we might enable autoescaping by default for security reasons. As such you are encouraged
to explicitly configure autoescaping now instead of relying on the default.

2.2 Unicode

Jinja is using Unicode internally which means that you have to pass Unicode objects to the render function or
bytestrings that only consist of ASCII characters. Additionally newlines are normalized to one end of line sequence
which is per default UNIX style (\n).

Python 2.x supports two ways of representing string objects. One is the str type and the other is the unicode type, both
of which extend a type called basestring. Unfortunately the default is szr which should not be used to store text based
information unless only ASCII characters are used. With Python 2.6 it is possible to make unicode the default on a per
module level and with Python 3 it will be the default.

To explicitly use a Unicode string you have to prefix the string literal with a u: u'H&nsel und Gretel sagen
Hallo'. That way Python will store the string as Unicode by decoding the string with the character encoding from
the current Python module. If no encoding is specified this defaults to ‘ASCII” which means that you can’t use any
non ASCII identifier.

To set a better module encoding add the following comment to the first or second line of the Python module using the
Unicode literal:

—*— coding: utf-8 —#*-—

We recommend utf-8 as Encoding for Python modules and templates as it’s possible to represent every Unicode
character in utf-8 and because it’s backwards compatible to ASCII. For Jinja the default encoding of templates is
assumed to be utf-8.

It is not possible to use Jinja to process non-Unicode data. The reason for this is that Jinja uses Unicode already on the
language level. For example Jinja treats the non-breaking space as valid whitespace inside expressions which requires
knowledge of the encoding or operating on an Unicode string.

For more details about Unicode in Python have a look at the excellent Unicode documentation.

Another important thing is how Jinja is handling string literals in templates. A naive implementation would be using
Unicode strings for all string literals but it turned out in the past that this is problematic as some libraries are type-
checking against str explicitly. For example datetime.strftime does not accept Unicode arguments. To not break it
completely Jinja is returning st¢r for strings that fit into ASCII and for everything else unicode:

>>> m = Template (u"{ et a, b = '"foo', '"foo' $}").module
>>> m.a

'foo!

>>> m.b

u'f\xfe\xfo'

2.3 High Level API

The high-level API is the API you will use in the application to load and render Jinja templates. The Low Level API
on the other side is only useful if you want to dig deeper into Jinja or develop extensions.

class jinja2.Environment ([options])
The core component of Jinja is the Environment. It contains important shared variables like configuration, filters,
tests, globals and others. Instances of this class may be modified if they are not shared and if no template was

6 Chapter 2. API

https://docs.python.org/3/howto/unicode.html

Jinja Documentation (2.11.x), Release 2.11.2

loaded so far. Modifications on environments after the first template was loaded will lead to surprising effects
and undefined behavior.

Here are the possible initialization parameters:
block_start_string The string marking the beginning of a block. Defaults to ' {%'.
block_end_string The string marking the end of a block. Defaultsto "%} '.
variable_start_string The string marking the beginning of a print statement. Defaults to ' { { '.
variable_end_string The string marking the end of a print statement. Defaultsto '} } '.
comment_start_string The string marking the beginning of a comment. Defaults to ' {#'.
comment_end_string The string marking the end of a comment. Defaults to "} '.

line_statement_prefix If given and a string, this will be used as prefix for line based statements. See
also Line Statements.

line_comment_prefix 1f given and a string, this will be used as prefix for line based comments. See
also Line Statements.

New in version 2.2.

trim_blocks If this is set to True the first newline after a block is removed (block, not variable tag!).
Defaults to False.

Istrip_blocks 1f this is set to True leading spaces and tabs are stripped from the start of a line to a
block. Defaults to False.

newline_sequence The sequence that starts a newline. Must be one of "\r', '\n' or '\r\n".
The default is '\n' which is a useful default for Linux and OS X systems as well as web
applications.

keep_trailing_newline Preserve the trailing newline when rendering templates. The default is
False, which causes a single newline, if present, to be stripped from the end of the template.

New in version 2.7.

extensions List of Jinja extensions to use. This can either be import paths as strings or extension
classes. For more information have a look at the extensions documentation.

optimized should the optimizer be enabled? Default is True.
undefined Undefined or asubclass of it that is used to represent undefined values in the template.

finalize A callable that can be used to process the result of a variable expression before it is output.
For example one can convert None implicitly into an empty string here.

autoescape 1If set to True the XML/HTML autoescaping feature is enabled by default. For more
details about autoescaping see Markup. As of Jinja 2.4 this can also be a callable that is passed
the template name and has to return True or False depending on autoescape should be enabled
by default.

Changed in version 2.4: autoescape can now be a function
loader The template loader for this environment.

cache_size The size of the cache. Per default this is 400 which means that if more than 400 tem-
plates are loaded the loader will clean out the least recently used template. If the cache size is set
to O templates are recompiled all the time, if the cache size is —1 the cache will not be cleaned.

Changed in version 2.8: The cache size was increased to 400 from a low 50.

23.

High Level API 7

Jinja Documentation (2.11.x), Release 2.11.2

auto_reload Some loaders load templates from locations where the template sources may change
(ie: file system or database). If auto_reload is set to True (default) every time a template
is requested the loader checks if the source changed and if yes, it will reload the template. For
higher performance it’s possible to disable that.

bytecode_cache 1If set to a bytecode cache object, this object will provide a cache for the internal
Jinja bytecode so that templates don’t have to be parsed if they were not changed.

See Bytecode Cache for more information.

enable_async 1If set to true this enables async template execution which allows you to take advantage
of newer Python features. This requires Python 3.6 or later.

shared
If a template was created by using the Template constructor an environment is created automatically.
These environments are created as shared environments which means that multiple templates may have the
same anonymous environment. For all shared environments this attribute is True, else False.

sandboxed
If the environment is sandboxed this attribute is 7rue. For the sandbox mode have a look at the documen-
tation for the SandboxedEnvironment.

filters
A dict of filters for this environment. As long as no template was loaded it’s safe to add new filters
or remove old. For custom filters see Custom Filters. For valid filter names have a look at Notes on
Identifiers.

tests
A dict of test functions for this environment. As long as no template was loaded it’s safe to modify this
dict. For custom tests see Custom Tests. For valid test names have a look at Notes on Identifiers.

globals
A dict of global variables. These variables are always available in a template. As long as no template was
loaded it’s safe to modify this dict. For more details see The Global Namespace. For valid object names
have a look at Notes on Identifiers.

policies
A dictionary with Policies. These can be reconfigured to change the runtime behavior or certain template
features. Usually these are security related.

code_generator_class
The class used for code generation. This should not be changed in most cases, unless you need to modify
the Python code a template compiles to.

context_class
The context used for templates. This should not be changed in most cases, unless you need to modify
internals of how template variables are handled. For details, see Context.

overlay ([options])
Create a new overlay environment that shares all the data with the current environment except for cache
and the overridden attributes. Extensions cannot be removed for an overlayed environment. An overlayed
environment automatically gets all the extensions of the environment it is linked to plus optional extra
extensions.

Creating overlays should happen after the initial environment was set up completely. Not all attributes
are truly linked, some are just copied over so modifications on the original environment may not shine
through.

undefined ([hint, obj, name, exc])
Creates a new Unde fined object for name. This is useful for filters or functions that may return unde-
fined objects for some operations. All parameters except of hint should be provided as keyword parameters

8 Chapter 2. API

Jinja Documentation (2.11.x), Release 2.11.2

for better readability. The hint is used as error message for the exception if provided, otherwise the er-
ror message will be generated from obj and name automatically. The exception provided as exc is raised
if something with the generated undefined object is done that the undefined object does not allow. The
default exception is UndefinedError. If a hint is provided the name may be omitted.

The most common way to create an undefined object is by providing a name only:

return environment.undefined (name="'"some_name"')

This means that the name some_name is not defined. If the name was from an attribute of an object it
makes sense to tell the undefined object the holder object to improve the error message:

if not hasattr(obj, 'attr'):
return environment.undefined(obj=obj, name='attr')

For a more complex example you can provide a hint. For example the i rst () filter creates an undefined
object that way:

return environment.undefined('no first item, sequence was empty')

If it the name or obj is known (for example because an attribute was accessed) it should be passed to the
undefined object, even if a custom hint is provided. This gives undefined objects the possibility to enhance
the error message.

add_extension (extension)
Adds an extension after the environment was created.

New in version 2.5.

compile_expression (source, undefined_to_none=True)
A handy helper method that returns a callable that accepts keyword arguments that appear as variables in
the expression. If called it returns the result of the expression.

This is useful if applications want to use the same rules as Jinja in template “configuration files” or similar
situations.

Example usage:

>>> env = Environment ()

>>> expr = env.compile_expression('foo == 42")
>>> expr (foo=23)

False

>>> expr (foo=42)

True

Per default the return value is converted to None if the expression returns an undefined value. This can be
changed by setting undefined_to_none to False.

>>> env.compile_expression('var') () is None

True

>>> env.compile_expression('var', undefined_to_none=False) ()
Undefined

New in version 2.1.

compile_templates (target, extensions=None, filter_func=None, zip="deflated’,

log_function=None, ignore_errors=True, py_compile=False)
Finds all the templates the loader can find, compiles them and stores them in farget. If zip is None, instead

of in a zipfile, the templates will be stored in a directory. By default a deflate zip algorithm is used. To
switch to the stored algorithm, zip can be setto ' stored"'.

High Level API 9

Jinja Documentation (2.11.x), Release 2.11.2

extensions and filter_func are passed to 1ist_templates (). Each template returned will be compiled
to the target folder or zipfile.

By default template compilation errors are ignored. In case a log function is provided, errors are logged. If
you want template syntax errors to abort the compilation you can set ignore_errors to False and you will
get an exception on syntax errors.

If py_compile is set to True .pyc files will be written to the target instead of standard .py files. This flag
does not do anything on pypy and Python 3 where pyc files are not picked up by itself and don’t give much
benefit.

New in version 2.4.

extend (**attributes)
Add the items to the instance of the environment if they do not exist yet. This is used by extensions to
register callbacks and configuration values without breaking inheritance.

from_string (source, globals=None, template_class=None)
Load a template from a string. This parses the source given and returns a Template object.

get_or_select_template (template_name_or_list, parent=None, globals=None)
Does a typecheck and dispatches to select_template () if an iterable of template names is given,
otherwise to get_template ().

New in version 2.3.

get_template (name, parent=None, globals=None)
Load a template from the loader. If a loader is configured this method asks the loader for the template
and returns a Template. If the parent parameter is not None, join_path () is called to get the real
template name before loading.

The globals parameter can be used to provide template wide globals. These variables are available in the
context at render time.

If the template does not exist a TemplateNotFound exception is raised.
Changed in version 2.4: If name is a Temp1ate object it is returned from the function unchanged.

join_path (template, parent)
Join a template with the parent. By default all the lookups are relative to the loader root so this method
returns the template parameter unchanged, but if the paths should be relative to the parent template, this
function can be used to calculate the real template name.

Subclasses may override this method and implement template path joining here.

list_templates (extensions=None, filter_func=None)
Returns a list of templates for this environment. This requires that the loader supports the loader’s
list_templates () method.

If there are other files in the template folder besides the actual templates, the returned list can be filtered.
There are two ways: either extensions is set to a list of file extensions for templates, or a filter_func can be
provided which is a callable that is passed a template name and should return True if it should end up in
the result list.

If the loader does not support that, a TypeError is raised.
New in version 2.4.

select_template (names, parent=None, globals=None)
Works like get_template () but tries a number of templates before it fails. If it cannot find any of the
templates, it will raise a TemplatesNotFound exception.

10 Chapter 2. API

https://docs.python.org/3/library/exceptions.html#TypeError

Jinja Documentation (2.11.x), Release 2.11.2

Changed in version 2.11: If names is Undefined, an UndefinedError is raised instead. If no tem-
plates were found and names contains Unde £ ined, the message is more helpful.

Changed in version 2.4: If names contains a Template object it is returned from the function unchanged.
New in version 2.3.

class jinja2.Template
The central template object. This class represents a compiled template and is used to evaluate it.

Normally the template object is generated from an Environment but it also has a constructor that makes
it possible to create a template instance directly using the constructor. It takes the same arguments as the
environment constructor but it’s not possible to specify a loader.

Every template object has a few methods and members that are guaranteed to exist. However it’s important that
a template object should be considered immutable. Modifications on the object are not supported.

Template objects created from the constructor rather than an environment do have an environment attribute that
points to a temporary environment that is probably shared with other templates created with the constructor and
compatible settings.

>>> template = Template('Hello {{ name }}!")

>>> template.render (name='John Doe') == u'Hello John Doe!'’
True

>>> stream = template.stream(name='John Doe')

>>> next (stream) == u'Hello John Doe!'

True

>>> next (stream)
Traceback (most recent call last):

StopIteration

globals
The dict with the globals of that template. It’s unsafe to modify this dict as it may be shared with other
templates or the environment that loaded the template.

name
The loading name of the template. If the template was loaded from a string this is None.

filename
The filename of the template on the file system if it was loaded from there. Otherwise this is None.

render ([context])
This method accepts the same arguments as the dict constructor: A dict, a dict subclass or some keyword
arguments. If no arguments are given the context will be empty. These two calls do the same:

template.render (knights="'that say nih'")
template.render ({'knights': 'that say nih'})

This will return the rendered template as unicode string.

generate ([context])
For very large templates it can be useful to not render the whole template at once but evaluate each state-
ment after another and yield piece for piece. This method basically does exactly that and returns a generator
that yields one item after another as unicode strings.

It accepts the same arguments as render ().

stream ([context])
Works exactly like generate () but returns a TemplateStream.

2.3. High Level API 11

Jinja Documentation (2.11.x), Release 2.11.2

render_async ([context])
This works similar to render () but returns a coroutine that when awaited returns the entire rendered
template string. This requires the async feature to be enabled.

Example usage:

await template.render_async (knights="'that say nih; asynchronously')

generate_async ([context])
An async version of generate (). Works very similarly but returns an async iterator instead.

make_ module (vars=None, shared=Fualse, locals=None)
This method works like the module attribute when called without arguments but it will evaluate the
template on every call rather than caching it. It’s also possible to provide a dict which is then used as
context. The arguments are the same as for the new_context () method.

property module
The template as module. This is used for imports in the template runtime but is also useful if one wants to
access exported template variables from the Python layer:

>>> t = Template('{% macro foo() %}42{ ndmacro %$}23")
>>> str(t.module)

|23'

>>> t.module.foo () == u'42'

True

This attribute is not available if async mode is enabled.

class jinjaZ.environment.TemplateStream
A template stream works pretty much like an ordinary python generator but it can buffer multiple items to
reduce the number of total iterations. Per default the output is unbuffered which means that for every unbuffered
instruction in the template one unicode string is yielded.

If buffering is enabled with a buffer size of 5, five items are combined into a new unicode string. This is mainly
useful if you are streaming big templates to a client via WSGI which flushes after each iteration.

disable_buffering ()
Disable the output buffering.

dump (fp, encoding=None, errors="strict’)
Dump the complete stream into a file or file-like object. Per default unicode strings are written, if you want
to encode before writing specify an encoding.

Example usage:

Template ('Hello {{ name }}!'").stream(name="foo'") .dump('hello.html")

enable_ buffering (size=5)
Enable buffering. Buffer size items before yielding them.

2.4 Autoescaping

Changed in version 2.4.

Jinja now comes with autoescaping support. As of Jinja 2.9 the autoescape extension is removed and built-in. However
autoescaping is not yet enabled by default though this will most likely change in the future. It’s recommended to
configure a sensible default for autoescaping. This makes it possible to enable and disable autoescaping on a per-
template basis (HTML versus text for instance).

12 Chapter 2. API

Jinja Documentation (2.11.x), Release 2.11.2

jinja2.select_autoescape (enabled_extensions=("html’, "htm’, 'xml’), disabled_extensions=(), de-
Sfault_for_string=True, default=False)
Intelligently sets the initial value of autoescaping based on the filename of the template. This is the recom-
mended way to configure autoescaping if you do not want to write a custom function yourself.

If you want to enable it for all templates created from strings or for all templates with .Atml and .xml extensions:

from jinja2 import Environment, select_autoescape

env = Environment (autoescape=select_autoescape (
enabled_extensions=('html', 'xml'"),
default_for_string=True,

))

Example configuration to turn it on at all times except if the template ends with .£xz:

from jinja2 import Environment, select_autoescape
env = Environment (autoescape=select_autoescape (
disabled_extensions=('txt',),
default_for_string=True,
default=True,

))

The enabled_extensions is an iterable of all the extensions that autoescaping should be enabled for. Likewise
disabled_extensions is a list of all templates it should be disabled for. If a template is loaded from a string then
the default from default_for_string is used. If nothing matches then the initial value of autoescaping is set to the
value of default.

For security reasons this function operates case insensitive.
New in version 2.9.

Here a recommended setup that enables autoescaping for templates ending in ' .html', ' .htm' and ' .xml"' and
disabling it by default for all other extensions. You can use the select_autoescape () function for this:

from jinja2 import Environment, select_autoescape
env = Environment (autoescape=select_autoescape(['html', 'htm', 'xml']),
loader=PackageLoader ('mypackage'))

The select_autoescape () function returns a function that works roughly like this:

def autoescape (template_name) :
if template_name is None:
return False
if template_name.endswith (('.html', '.htm', '.xml'))

When implementing a guessing autoescape function, make sure you also accept None as valid template name. This
will be passed when generating templates from strings. You should always configure autoescaping as defaults in the
future might change.

Inside the templates the behaviour can be temporarily changed by using the autoescape block (see Autoescape Over-
rides).

2.5 Notes on Ildentifiers

Jinja uses Python naming rules. Valid identifiers can be any combination of Unicode characters accepted by Python.

Filters and tests are looked up in separate namespaces and have slightly modified identifier syntax. Filters and tests
may contain dots to group filters and tests by topic. For example it’s perfectly valid to add a function into the filter

2.5. Notes on ldentifiers 13

Jinja Documentation (2.11.x), Release 2.11.2

dict and call it fo.unicode. The regular expression for filter and test identifiers is [a-zA-7Z_] [a—zA-Z0-9_]* (\.
[a—zA-Z_][a—zA-720-9_] %) "

2.6 Undefined Types

These classes can be used as undefined types. The Environment constructor takes an undefined parameter that can
be one of those classes or a custom subclass of Undefined. Whenever the template engine is unable to look up a
name or access an attribute one of those objects is created and returned. Some operations on undefined values are then
allowed, others fail.

The closest to regular Python behavior is the St rictUndefined which disallows all operations beside testing if
it’s an undefined object.

class Jjinja2.Undefined

The default undefined type. This undefined type can be printed and iterated over, but every other access will
raise an UndefinedError:

>>> foo = Undefined (name='foo')
>>> str (foo)

T

>>> not foo

True

>>> foo + 42

Traceback (most recent call last):

jinja2.exceptions.UndefinedError: 'foo' is undefined

_undefined _hint
Either None or an unicode string with the error message for the undefined object.

_undefined_obj

Either None or the owner object that caused the undefined object to be created (for example because an
attribute does not exist).

_undefined name
The name for the undefined variable / attribute or just None if no such information exists.

undefined exception

The exception that the undefined object wants to raise. This is usually one of UndefinedError or
SecurityError.

_fail with_undefined_error (*args, **kwargs)
When called with any arguments this method raises _undefined exception with an error message
generated from the undefined hints stored on the undefined object.

class jinja2.ChainableUndefined

An undefined that is chainable, where both __getattr___and __getitem__ return itself rather than raising
an UndefinedError.

>>> foo = ChainableUndefined (name='foo')

>>> str (foo.bar['baz'])
T

>>> foo.bar['baz'] + 42
Traceback (most recent call last):

jinja2.exceptions.UndefinedError: 'foo' is undefined

New in version 2.11.0.

14

Chapter 2. API

Jinja Documentation (2.11.x), Release 2.11.2

class jinjaZ2.DebugUndefined
An undefined that returns the debug info when printed.

>>> foo = DebugUndefined (name='foo")
>>> str (foo)

"{{ foo }}'

>>> not foo

True

>>> foo + 42

Traceback (most recent call last):

jinja2.exceptions.UndefinedError: 'foo' is undefined

class jinja2.StrictUndefined
An undefined that barks on print and iteration as well as boolean tests and all kinds of comparisons. In other
words: you can do nothing with it except checking if it’s defined using the defined test.

>>> foo = StrictUndefined (name='foo')
>>> str (foo)
Traceback (most recent call last):

jinja2.exceptions.UndefinedError: 'foo' is undefined
>>> not foo
Traceback (most recent call last):

jinja2.exceptions.UndefinedError: 'foo' 1is undefined
>>> foo + 42

Traceback (most recent call last):

jinja2.exceptions.UndefinedError: 'foo' is undefined

There is also a factory function that can decorate undefined objects to implement logging on failures:

jinja2.make_logging_undefined (logger=None, base=None)
Given a logger object this returns a new undefined class that will log certain failures. It will log iterations and
printing. If no logger is given a default logger is created.

Example:

logger = logging.getlLogger (name)
LoggingUndefined = make_logging_undefined(
logger=logger,
base=Undefined

New in version 2.8.
Parameters
* logger — the logger to use. If not provided, a default logger is created.
* base - the base class to add logging functionality to. This defaults to Undefined.

Undefined objects are created by calling undefined.

Implementation

Undefined objects are implemented by overriding the special __ underscore__ methods. For example the default
Undefined class implements __unicode__ in a way that it returns an empty string, however __int__ and others still
fail with an exception. To allow conversion to int by returning 0 you can implement your own:

2.6. Undefined Types 15

Jinja Documentation (2.11.x), Release 2.11.2

class NullUndefined (Undefined) :

def _ int_ (self):
return 0

def _ float_ (self):
return 0.0

To disallow a method, just override it and raise _undefined_exception. Because this is a very common idiom
in undefined objects there is the helper method _fail with undefined _error () that does the error raising
automatically. Here a class that works like the regular Unde i ned but chokes on iteration:

class NonIterableUndefined (Undefined) :

__iter_ = Undefined._fail with_undefined_error

2.7 The Context

class jinja2.runtime.Context

The template context holds the variables of a template. It stores the values passed to the template and also the
names the template exports. Creating instances is neither supported nor useful as it’s created automatically at
various stages of the template evaluation and should not be created by hand.

The context is immutable. Modifications on parent must not happen and modifications on vars are allowed
from generated template code only. Template filters and global functions marked as contextfunction()s
get the active context passed as first argument and are allowed to access the context read-only.

The template context supports read only dict operations (get, keys, values, items, iterkeys, itervalues, iteritems,
__getitem__, __contains__). Additionally there is a resolve () method that doesn’t fail with a KeyError but
returns an Undef ined object for missing variables.

parent
A dict of read only, global variables the template looks up. These can either come from another Context,
from the Environment .globals or Template.globals or points to a dict created by combining
the globals with the variables passed to the render function. It must not be altered.

vars
The template local variables. This list contains environment and context functions from the parent scope
as well as local modifications and exported variables from the template. The template will modify this dict
during template evaluation but filters and context functions are not allowed to modify it.

environment
The environment that loaded the template.

exported vars
This set contains all the names the template exports. The values for the names are in the vars dict. In
order to get a copy of the exported variables as dict, get_exported () can be used.

name
The load name of the template owning this context.

blocks
A dict with the current mapping of blocks in the template. The keys in this dict are the names of the blocks,
and the values a list of blocks registered. The last item in each list is the current active block (latest in the
inheritance chain).

eval_ctx
The current Evaluation Context.

16

Chapter 2. API

Jinja Documentation (2.11.x), Release 2.11.2

call (callable, *args, **kwargs)
Call the callable with the arguments and keyword arguments provided but inject the active context or envi-
ronment as first argument if the callable is a context function () or environmentfunction ().

get_all ()
Return the complete context as dict including the exported variables. For optimizations reasons this might
not return an actual copy so be careful with using it.

get_exported ()
Get a new dict with the exported variables.

resolve (key)
Looks up a variable like __getitem__ or get but returns an Unde f i ned object with the name of the name
looked up.

Implementation

Context is immutable for the same reason Python’s frame locals are immutable inside functions. Both Jinja and Python
are not using the context / frame locals as data storage for variables but only as primary data source.

When a template accesses a variable the template does not define, Jinja looks up the variable in the context, after that
the variable is treated as if it was defined in the template.

2.8 Loaders

Loaders are responsible for loading templates from a resource such as the file system. The environment will keep the
compiled modules in memory like Python’s sys.modules. Unlike sys.modules however this cache is limited in size by
default and templates are automatically reloaded. All loaders are subclasses of BaseLoader. If you want to create
your own loader, subclass BaseLoader and override get_source.

class jinjaZ2.BaseLoader
Baseclass for all loaders. Subclass this and override get_source to implement a custom loading mechanism. The
environment provides a getr_template method that calls the loader’s load method to get the Template object.

A very basic example for a loader that looks up templates on the file system could look like this:

from jinja2 import Baseloader, TemplateNotFound
from os.path import join, exists, getmtime

class MyLoader (Baseloader) :

def _ _init__ (self, path):
self.path = path

def get_source(self, environment, template):
path = join(self.path, template)
if not exists(path):
raise TemplateNotFound (template)

mtime = getmtime (path)
with file(path) as f:
source = f.read().decode('utf-8")
return source, path, lambda: mtime == getmtime (path)

get_source (environment, template)
Get the template source, filename and reload helper for a template. It’s passed the environment and tem-

2.8. Loaders 17

Jinja Documentation (2.11.x), Release 2.11.2

plate name and has to return a tuple in the form (source, filename, uptodate) orraise a Tem-
plateNotFound error if it can’t locate the template.

The source part of the returned tuple must be the source of the template as unicode string or a ASCII
bytestring. The filename should be the name of the file on the filesystem if it was loaded from there,
otherwise None. The filename is used by python for the tracebacks if no loader extension is used.

The last item in the tuple is the uprodate function. If auto reloading is enabled it’s always called to check
if the template changed. No arguments are passed so the function must store the old state somewhere (for
example in a closure). If it returns False the template will be reloaded.

load (environment, name, globals=None)
Loads a template. This method looks up the template in the cache or loads one by -calling
get_source (). Subclasses should not override this method as loaders working on collections of other
loaders (such as PrefixLoader or ChoiceLoader) will not call this method but ger_source directly.

Here a list of the builtin loaders Jinja provides:

class jinja2.FileSystemLoader (searchpath, encoding="utf-8’, followlinks=False)
Loads templates from the file system. This loader can find templates in folders on the file system and is the
preferred way to load them.

The loader takes the path to the templates as string, or if multiple locations are wanted a list of them which is
then looked up in the given order:

>>> loader = FileSystemLoader ('/path/to/templates!')
>>> loader = FileSystemLoader (['/path/to/templates', '/other/path'])

Per default the template encoding is 'ut£-8"' which can be changed by setting the encoding parameter to
something else.

To follow symbolic links, set the followlinks parameter to True:

>>> loader = FileSystemLoader ('/path/to/templates', followlinks=True)

Changed in version 2.8: The followlinks parameter was added.

class jinja2.Packageloader (package_name, package_path="templates’, encoding="utf-8’)
Load templates from python eggs or packages. It is constructed with the name of the python package and the
path to the templates in that package:

loader = PackagelLoader ('mypackage', 'views')

If the package path is not given, 'templates’ is assumed.

Per default the template encoding is 'ut£-8' which can be changed by setting the encoding parameter to
something else. Due to the nature of eggs it’s only possible to reload templates if the package was loaded from
the file system and not a zip file.

class jinjaZ2.DictLoader (mapping)
Loads a template from a python dict. It’s passed a dict of unicode strings bound to template names. This loader
is useful for unittesting:

>>> loader = DictLoader ({'index.html': 'source here'})

Because auto reloading is rarely useful this is disabled per default.

class jinja2.FunctionLoader (load_func)
A loader that is passed a function which does the loading. The function receives the name of the template and
has to return either an unicode string with the template source, a tuple in the form (source, filename,
uptodatefunc) or None if the template does not exist.

18 Chapter 2. API

Jinja Documentation (2.11.x), Release 2.11.2

>>> def load_template (name) :
if name == 'index.html':
return '...'

>>> loader = FunctionLoader (load_template)

The uptodatefunc is a function that is called if autoreload is enabled and has to return True if the template is still
up to date. For more details have a look at BaseLoader.get_source () which has the same return value.

class jinja2.PrefixLoader (mapping, delimiter="/")
A loader that is passed a dict of loaders where each loader is bound to a prefix. The prefix is delimited from the
template by a slash per default, which can be changed by setting the delimiter argument to something else:

loader = PrefixLoader ({
'appl': PackagelLoader ('mypackage.appl'),
'app2': PackageLoader ('mypackage.app2')

})

By loading 'appl/index.html’ the file from the appl package is loaded, by loading 'app2/index.
html"' the file from the second.

class jinja2.ChoiceLoader (loaders)
This loader works like the PrefixLoader just that no prefix is specified. If a template could not be found by one
loader the next one is tried.

>>> loader = Choiceloader ([
FileSystemLoader ('/path/to/user/templates’'),
FileSystemLoader ('/path/to/system/templates')

1)

This is useful if you want to allow users to override builtin templates from a different location.

class jinja2.ModuleLoader (path)
This loader loads templates from precompiled templates.

Example usage:

>>> loader = Choiceloader (]
ModuleLoader (' /path/to/compiled/templates'),
FileSystemLoader ('/path/to/templates')
1)

Templates can be precompiled with Environment.compile templates ().

2.9 Bytecode Cache

Jinja 2.1 and higher support external bytecode caching. Bytecode caches make it possible to store the generated
bytecode on the file system or a different location to avoid parsing the templates on first use.

This is especially useful if you have a web application that is initialized on the first request and Jinja compiles many
templates at once which slows down the application.

To use a bytecode cache, instantiate it and pass it to the Environment.

class jinja2.BytecodeCache
To implement your own bytecode cache you have to subclass this class and override 1oad_bytecode () and
dump_bytecode (). Both of these methods are passed a Bucket.

2.9. Bytecode Cache 19

Jinja Documentation (2.11.x), Release 2.11.2

A very basic bytecode cache that saves the bytecode on the file system:

from os import path
class MyCache (BytecodeCache) :

def _ init_ (self, directory):
self.directory = directory

def load_bytecode(self, bucket):
filename = path.join(self.directory, bucket.key)
if path.exists (filename) :
with open(filename, 'rb') as f:
bucket.load_bytecode (f)

def dump_bytecode (self, bucket):
filename = path.join(self.directory, bucket.key)
with open(filename, 'wb') as f:
bucket.write_bytecode (f)

A more advanced version of a filesystem based bytecode cache is part of Jinja.

clear ()
Clears the cache. This method is not used by Jinja but should be implemented to allow applications to
clear the bytecode cache used by a particular environment.

dump_bytecode (bucket)
Subclasses have to override this method to write the bytecode from a bucket back to the cache. If it unable
to do so it must not fail silently but raise an exception.

load_bytecode (bucket)
Subclasses have to override this method to load bytecode into a bucket. If they are not able to find code in
the cache for the bucket, it must not do anything.

class jinja2.bccache.Bucket (environment, key, checksum)

Buckets are used to store the bytecode for one template. It’s created and initialized by the bytecode cache and
passed to the loading functions.

The buckets get an internal checksum from the cache assigned and use this to automatically reject outdated
cache material. Individual bytecode cache subclasses don’t have to care about cache invalidation.

environment
The Environment that created the bucket.

key
The unique cache key for this bucket

code
The bytecode if it’s loaded, otherwise None.

bytecode_from_string (string)
Load bytecode from a string.

bytecode_to_string()
Return the bytecode as string.

load_bytecode (f)
Loads bytecode from a file or file like object.

reset ()
Resets the bucket (unloads the bytecode).

20

Chapter 2. API

Jinja Documentation (2.11.x), Release 2.11.2

write_bytecode (f)
Dump the bytecode into the file or file like object passed.

Builtin bytecode caches:

class jinja2.FileSystemBytecodeCache (directory=None, pattern="__jinja2_%s.cache’)
A bytecode cache that stores bytecode on the filesystem. It accepts two arguments: The directory where the
cache items are stored and a pattern string that is used to build the filename.

If no directory is specified a default cache directory is selected. On Windows the user’s temp directory is used,
on UNIX systems a directory is created for the user in the system temp directory.

The pattern can be used to have multiple separate caches operate on the same directory. The default pattern is
'__Jjinja2_%s.cache'. $sisreplaced with the cache key.

>>> bcc = FileSystemBytecodeCache ('/tmp/jinja_cache', '%s.cache')

This bytecode cache supports clearing of the cache using the clear method.

class jinja2.MemcachedBytecodeCache (client, prefix="jinja2/bytecode/’, timeout=None, ig-

nore_memcache_errors=True)
This class implements a bytecode cache that uses a memcache cache for storing the information. It does not

enforce a specific memcache library (tummy’s memcache or cmemcache) but will accept any class that provides
the minimal interface required.

Libraries compatible with this class:
* cachelib
e python-memcached

(Unfortunately the django cache interface is not compatible because it does not support storing binary data,
only unicode. You can however pass the underlying cache client to the bytecode cache which is available as
django.core.cache.cache._client.)

The minimal interface for the client passed to the constructor is this:

class MinimalClientInterface

set (key, value[, timeout])
Stores the bytecode in the cache. value is a string and timeout the timeout of the key. If timeout is not
provided a default timeout or no timeout should be assumed, if it’s provided it’s an integer with the
number of seconds the cache item should exist.

get (key)
Returns the value for the cache key. If the item does not exist in the cache the return value must be
None.

The other arguments to the constructor are the prefix for all keys that is added before the actual cache key and
the timeout for the bytecode in the cache system. We recommend a high (or no) timeout.

This bytecode cache does not support clearing of used items in the cache. The clear method is a no-operation
function.

New in version 2.7: Added support for ignoring memcache errors through the ignore_memcache_errors param-
eter.

2.10 Async Support

New in version 2.9.

2.10. Async Support 21

https://github.com/pallets/cachelib
https://pypi.org/project/python-memcached/

Jinja Documentation (2.11.x), Release 2.11.2

Jinja supports the Python async and awa it syntax. For the template designer, this support (when enabled) is entirely
transparent, templates continue to look exactly the same. However, developers should be aware of the implementation
as it affects what types of APIs you can use.

By default, async support is disabled. Enabling it will cause the environment to compile different code behind the
scenes in order to handle async and sync code in an asyncio event loop. This has the following implications:

» Template rendering requires an event loop to be available to the current thread. asyncio.
get_event_loop () must return an event loop.

* The compiled code uses await for functions and attributes, and uses async for loops. In order to support
using both async and sync functions in this context, a small wrapper is placed around all calls and access, which
add overhead compared to purely async code.

* Sync methods and filters become wrappers around their corresponding async implementations where needed.
For example, render invokes async_render, and | map supports async iterables.

Awaitable objects can be returned from functions in templates and any function call in a template will automatically
await the result. The await you would normally add in Python is implied. For example, you can provide a method
that asynchronously loads data from a database, and from the template designer’s point of view it can be called like
any other function.

2.11 Policies

Starting with Jinja 2.9 policies can be configured on the environment which can slightly influence how filters and other
template constructs behave. They can be configured with the policies attribute.

Example:

env.policies['urlize.rel'] = 'nofollow noopener'

compiler.ascii_str: This boolean controls on Python 2 if Jinja should store ASCII only literals as bytestring
instead of unicode strings. This used to be always enabled for Jinja versions below 2.9 and now can be changed.
Traditionally it was done this way since some APIs in Python 2 failed badly for unicode strings (for instance
the datetime strftime API). Now however sometimes the inverse is true (for instance str.format). If this is set to
False then all strings are stored as unicode internally.

truncate.leeway: Configures the leeway default for the truncate filter. Leeway as introduced in 2.9 but to restore
compatibility with older templates it can be configured to O to get the old behavior back. The default is 5.

urlize.rel: A string that defines the items for the rel attribute of generated links with the urlize filter. These items
are always added. The default is noopener.

urlize.target: The default target that is issued for links from the urlize filter if no other target is defined by the
call explicitly.

json.dumps_function: If this is set to a value other than None then the fojson filter will dump with this function
instead of the default one. Note that this function should accept arbitrary extra arguments which might be passed
in the future from the filter. Currently the only argument that might be passed is indent. The default dump
function is json.dumps.

json.dumps_kwargs: Keyword arguments to be passed to the dump function. The defaultis { 'sort_keys':
True}.

ext.il8n.trimmed: If this is set to True, {$ trans %} blocks of the i/8n Extension will always unify line-
breaks and surrounding whitespace as if the trimmed modifier was used.

22 Chapter 2. API

https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop

Jinja Documentation (2.11.x), Release 2.11.2

2.12 Utilities

These helper functions and classes are useful if you add custom filters or functions to a Jinja environment.

jinja2.environmentfilter (f)
Decorator for marking environment dependent filters. The current Environment is passed to the filter as first
argument.

jinja2.contextfilter (f)
Decorator for marking context dependent filters. The current Context will be passed as first argument.

jinja2.evalcontextfilter (f)
Decorator for marking eval-context dependent filters. An eval context object is passed as first argument. For
more information about the eval context, see Evaluation Context.

New in version 2.4.

jinja2.environmentfunction (f)
This decorator can be used to mark a function or method as environment callable. This decorator works exactly
like the context function () decorator just that the first argument is the active Environment and not
context.

jinja2.contextfunction (f)
This decorator can be used to mark a function or method context callable. A context callable is passed the active
Context as first argument when called from the template. This is useful if a function wants to get access to the
context or functions provided on the context object. For example a function that returns a sorted list of template
variables the current template exports could look like this:

@contextfunction
def get_exported_names (context) :
return sorted(context.exported_vars)

jinja2.evalcontextfunction (f)
This decorator can be used to mark a function or method as an eval context callable. This is similar to the
contextfunction () but instead of passing the context, an evaluation context object is passed. For more
information about the eval context, see Evaluation Context.

New in version 2.4.

jinja2.escape (s)
Convert the characters &, <, >, ', and " in string s to HTML-safe sequences. Use this if you need to display
text that might contain such characters in HTML. This function will not escaped objects that do have an HTML
representation such as already escaped data.

The return value is a Markup string.

jinja2.clear_caches ()
Jinja keeps internal caches for environments and lexers. These are used so that Jinja doesn’t have to recreate
environments and lexers all the time. Normally you don’t have to care about that but if you are measuring
memory consumption you may want to clean the caches.

jinja2.is_undefined (0bj)
Check if the object passed is undefined. This does nothing more than performing an instance check against
Unde fined but looks nicer. This can be used for custom filters or tests that want to react to undefined variables.
For example a custom default filter can look like this:

def default (var, default='"):
if is_undefined(var) :

(continues on next page)

2.12. Utilities 23

Jinja Documentation (2.11.x), Release 2.11.2

(continued from previous page)

return default
return var

class jinja2.Markup ([string])
A string that is ready to be safely inserted into an HTML or XML document, either because it was escaped or
because it was marked safe.

Passing an object to the constructor converts it to text and wraps it to mark it safe without escaping. To escape
the text, use the escape () class method instead.

>>> Markup ('Hello, World!")

Markup ('Hello, World!")

>>> Markup (42)

Markup ('42")

>>> Markup.escape ('Hello, World!")
Markup ('Hello Worlds< /em>!")

This implements the __html__ () interface that some frameworks use. Passing an object that implements
__html__ () will wrap the output of that method, marking it safe.

>>> class Foo:
def _ html__ (self):
return 'foo"

>>> Markup (Foo ())
Markup ('foo")

This is a subclass of the text type (st r in Python 3, unicode in Python 2). It has the same methods as that
type, but all methods escape their arguments and return a Markup instance.

>>> Markup ('%s'"') % 'foo & bar'
Markup ('foo & bar")
>>> Markup ('Hello ') + '<foo>'

Markup ('Hello < foos> ")

classmethod escape (s)
Escape a string. Calls escape () and ensures that for subclasses the correct type is returned.

striptags ()
unescape () the markup, remove tags, and normalize whitespace to single spaces.

>>> Markup ('Main » About") .striptags ()
'Main » About'

unescape ()
Convert escaped markup back into a text string. This replaces HTML entities with the characters they
represent.

>>> Markup ('Main » About') .unescape ()
'Main » About'

Note

The Jinja Markup class is compatible with at least Pylons and Genshi. It’s expected that more template engines and
framework will pick up the __hfml__ concept soon.

24 Chapter 2. API

Jinja Documentation (2.11.x), Release 2.11.2

2.13 Exceptions

exception jinja2.TemplateError (message=None)
Baseclass for all template errors.

exception jinja2.UndefinedError (message=None)
Raised if a template tries to operate on Undefined.

exception jinja2.TemplateNotFound (name, message=None)
Raised if a template does not exist.

Changed in version 2.11: If the given name is Undefined and no message was provided, an
UndefinedError is raised.

exception jinja2.TemplatesNotFound (names=(), message=None)
Like TemplateNotFound but raised if multiple templates are selected. This is a subclass of
TemplateNotFound exception, so just catching the base exception will catch both.

Changed in version 2.11: If a name in the list of names is Undefined, a message about it being undefined is
shown rather than the empty string.

New in version 2.2.

exception jinja2.TemplateSyntaxError (message, lineno, name=None, filename=None)
Raised to tell the user that there is a problem with the template.

message
The error message as utf-8 bytestring.

lineno
The line number where the error occurred

name
The load name for the template as unicode string.

filename
The filename that loaded the template as bytestring in the encoding of the file system (most likely utf-8 or
mbcs on Windows systems).

The reason why the filename and error message are bytestrings and not unicode strings is that Python 2.x is not
using unicode for exceptions and tracebacks as well as the compiler. This will change with Python 3.

exception jinja2.TemplateRuntimeError (message=None)
A generic runtime error in the template engine. Under some situations Jinja may raise this exception.

exception jinja2.TemplateAssertionError (message, lineno, name=None, filename=None)
Like a template syntax error, but covers cases where something in the template caused an error at compile time
that wasn’t necessarily caused by a syntax error. However it’s a direct subclass of TemplateSyntaxError
and has the same attributes.

2.14 Custom Filters

Custom filters are just regular Python functions that take the left side of the filter as first argument and the arguments
passed to the filter as extra arguments or keyword arguments.

For example in the filter {{ 42 |myfilter (23) }} the function would be called with myfilter (42, 23).
Here for example a simple filter that can be applied to datetime objects to format them:

2.13. Exceptions 25

Jinja Documentation (2.11.x), Release 2.11.2

def datetimeformat (value, format='%H:%M / -%m-%Y"') :
return value.strftime (format)

You can register it on the template environment by updating the £i 1ters dict on the environment:

environment.filters|['datetimeformat'] = datetimeformat

Inside the template it can then be used as follows:

written on: {{ article.pub_date|datetimeformat }}
publication date: {{ article.pub_date|datetimeformat ('%d-sm-%Y') }}

Filters can also be passed the current template context or environment. This is useful if a filter wants to re-
turn an undefined value or check the current autoescape setting. For this purpose three decorators exist:
environmentfilter (), contextfilter () and evalcontextfilter().

Here a small example filter that breaks a text into HTML line breaks and paragraphs and marks the return value as safe
HTML string if autoescaping is enabled:

import re
from jinja2 import evalcontextfilter, Markup, escape

_paragraph_re = re.compile (r' (?:\r\n|\r(?2!\n) |\n){2,}")

@evalcontextfilter
def nl2br(eval_ctx, value):
result = u'\n\n'.join(u'<p>%s</p>' % p.replace('\n', Markup('
\n'))
for p in _paragraph_re.split (escape(value)))
if eval_ctx.autoescape:
result = Markup (result)
return result

Context filters work the same just that the first argument is the current active Context rather than the environment.

2.15 Evaluation Context

The evaluation context (short eval context or eval ctx) is a new object introduced in Jinja 2.4 that makes it possible to
activate and deactivate compiled features at runtime.

Currently it is only used to enable and disable the automatic escaping but can be used for extensions as well.

In previous Jinja versions filters and functions were marked as environment callables in order to check for the au-
toescape status from the environment. In new versions it’s encouraged to check the setting from the evaluation context
instead.

Previous versions:

@environmentfilter
def filter (env, value):
result = do_something(value)
if env.autoescape:
result = Markup (result)
return result

In new versions you can either use a context filter () and access the evaluation context from the actual context,
oruse a evalcontextfilter () which directly passes the evaluation context to the function:

26 Chapter 2. API

Jinja Documentation (2.11.x), Release 2.11.2

@contextfilter
def filter (context, value):
result = do_something(value)
if context.eval_ctx.autoescape:
result = Markup (result)
return result

@evalcontextfilter
def filter (eval_ctx, wvalue):
result = do_something(value)
if eval_ctx.autoescape:
result = Markup (result)
return result

The evaluation context must not be modified at runtime. Modifications must only happen with a nodes.
EvalContextModifier and nodes.ScopedEvalContextModifier from an extension, not on the eval
context object itself.

class jinja2.nodes.EvalContext (environment, template_name=None)
Holds evaluation time information. Custom attributes can be attached to it in extensions.

autoescape
True or False depending on if autoescaping is active or not.

volatile
True if the compiler cannot evaluate some expressions at compile time. At runtime this should always be
False.

2.16 Custom Tests

Tests work like filters just that there is no way for a test to get access to the environment or context and that they can’t
be chained. The return value of a test should be True or False. The purpose of a test is to give the template designers
the possibility to perform type and conformability checks.

Here a simple test that checks if a variable is a prime number:

import math

def is_prime (n):
if n ==
return True
for i in range (2, int (math.ceil (math.sqrt(n))) + 1):
ifn%i==20:
return False
return True

You can register it on the template environment by updating the test s dict on the environment:

environment.tests|['prime'] = is_prime

A template designer can then use the test like this:

{% if 42 is prime 3%}
42 is a prime number
{% else %}

(continues on next page)

2.16. Custom Tests 27

Jinja Documentation (2.11.x), Release 2.11.2

(continued from previous page)

42 is not a prime number
% endif %)

2.17 The Global Namespace

Variables stored in the Environment.globals dict are special as they are available for imported templates too,
even if they are imported without context. This is the place where you can put variables and functions that should be
available all the time. Additionally Template.globals exist that are variables available to a specific template that
are available to all render () calls.

2.18 Low Level API

The low level API exposes functionality that can be useful to understand some implementation details, debugging
purposes or advanced extension techniques. Unless you know exactly what you are doing we don’t recommend using
any of those.

Environment .lex (source, name=None, filename=None)
Lex the given sourcecode and return a generator that yields tokens as tuples in the form (lineno,
token_type, wvalue). This can be useful for extension development and debugging templates.

This does not perform preprocessing. If you want the preprocessing of the extensions to be applied you have to
filter source through the preprocess () method.

Environment . parse (source, name=None, filename=None)
Parse the sourcecode and return the abstract syntax tree. This tree of nodes is used by the compiler to convert
the template into executable source- or bytecode. This is useful for debugging or to extract information from
templates.

If you are developing Jinja extensions this gives you a good overview of the node tree generated.

Environment .preprocess (source, name=None, filename=None)
Preprocesses the source with all extensions. This is automatically called for all parsing and compiling methods
but not for 1ex () because there you usually only want the actual source tokenized.

Template.new_context (vars=None, shared=False, locals=None)
Create a new Context for this template. The vars provided will be passed to the template. Per default the
globals are added to the context. If shared is set to True the data is passed as is to the context without adding the
globals.

locals can be a dict of local variables for internal usage.

Template.root_render_func (confext)
This is the low level render function. It’s passed a Context that has to be created by new_context () of the
same template or a compatible template. This render function is generated by the compiler from the template
code and returns a generator that yields unicode strings.

If an exception in the template code happens the template engine will not rewrite the exception but pass
through the original one. As a matter of fact this function should only be called from within a render ()
/ generate () | stream() call.

Template.blocks
A dict of block render functions. Each of these functions works exactly like the root_render. func () with
the same limitations.

28 Chapter 2. API

Jinja Documentation (2.11.x), Release 2.11.2

Template.is_up_to_date
This attribute is False if there is a newer version of the template available, otherwise True.

Note

The low-level API is fragile. Future Jinja versions will try not to change it in a backwards incompatible way but
modifications in the Jinja core may shine through. For example if Jinja introduces a new AST node in later versions
that may be returned by parse ().

2.19 The Meta API

New in version 2.2.

The meta API returns some information about abstract syntax trees that could help applications to implement more
advanced template concepts. All the functions of the meta API operate on an abstract syntax tree as returned by the
Environment.parse () method.

jinja2.meta.find_undeclared _variables (ast)
Returns a set of all variables in the AST that will be looked up from the context at runtime. Because at compile
time it’s not known which variables will be used depending on the path the execution takes at runtime, all
variables are returned.

>>> from jinja2 import Environment, meta

>>> env = Environment ()

>>> ast = env.parse('{ et foo = 42 %}{{ bar + foo }}")
>>> meta.find_undeclared_variables (ast) == set (['bar'])
True

Implementation

Internally the code generator is used for finding undeclared variables. This is good to know because the code
generator might raise a TemplateAssertionError during compilation and as a matter of fact this function
can currently raise that exception as well.

jinja2.meta.find_referenced templates (ast)
Finds all the referenced templates from the AST. This will return an iterator over all the hardcoded template
extensions, inclusions and imports. If dynamic inheritance or inclusion is used, None will be yielded.

>>> from jinja2 import Environment, meta

>>> env = Environment ()

>>> ast = env.parse('{ xtends "layout.html" %} { nclude helper %}'")
>>> list (meta.find_referenced_templates (ast))

['"layout.html', None]

This function is useful for dependency tracking. For example if you want to rebuild parts of the website after a
layout template has changed.

2.19. The Meta API 29

Jinja Documentation (2.11.x), Release 2.11.2

30 Chapter 2. API

CHAPTER
THREE

SANDBOX

The Jinja sandbox can be used to evaluate untrusted code. Access to unsafe attributes and methods is prohibited.

Assuming env is a SandboxedEnvironment in the default configuration the following piece of code shows how
it works:

>>> env.from_string("{{ func.func_code }}").render (func=lambda:None)

uVl

>>> env.from_string("{{ func.func_code.do_something }}").render (func=lambda:None)
Traceback (most recent call last):

SecurityError: access to attribute 'func_code' of 'function' object is unsafe.

3.1 API

class jinja2.sandbox.SandboxedEnvironment ([options])
The sandboxed environment. It works like the regular environment but tells the compiler to generate sandboxed
code. Additionally subclasses of this environment may override the methods that tell the runtime what attributes
or functions are safe to access.

If the template tries to access insecure code a SecurityError is raised. However also other exceptions may
occur during the rendering so the caller has to ensure that all exceptions are caught.

call_binop (context, operator, left, right)
For intercepted binary operator calls (intercepted _binops ()) this function is executed instead of
the builtin operator. This can be used to fine tune the behavior of certain operators.

New in version 2.6.

call_unop (context, operator, arg)
For intercepted unary operator calls (intercepted_unops ()) this function is executed instead of the
builtin operator. This can be used to fine tune the behavior of certain operators.

New in version 2.6.

default_binop_table = {'%': <built-in function mod>, '*': <built-in function mul>, '
default callback table for the binary operators. A copy of this is available on each instance of a sandboxed
environment as binop_table

default_unop_table = {'+': <built-in function pos>, '-': <built-in function neg>}
default callback table for the unary operators. A copy of this is available on each instance of a sandboxed
environment as unop_table

intercepted binops = frozenset ({})
a set of binary operators that should be intercepted. Each operator that is added to this set (empty by

31

Jinja Documentation (2.11.x), Release 2.11.2

default) is delegated to the call binop () method that will perform the operator. The default operator
callback is specified by binop_table.

The following binary operators are interceptable: //, %, +, *, —, /, and *

The default operation form the operator table corresponds to the builtin function. Intercepted calls are
always slower than the native operator call, so make sure only to intercept the ones you are interested in.

New in version 2.6.

intercepted unops = frozenset ({})
a set of unary operators that should be intercepted. Each operator that is added to this set (empty by default)
is delegated to the call_unop () method that will perform the operator. The default operator callback
is specified by unop_table.

The following unary operators are interceptable: +, —

The default operation form the operator table corresponds to the builtin function. Intercepted calls are
always slower than the native operator call, so make sure only to intercept the ones you are interested in.

New in version 2.6.

is_safe_attribute (0bj, attr, value)
The sandboxed environment will call this method to check if the attribute of an object is safe to access.
Per default all attributes starting with an underscore are considered private as well as the special attributes
of internal python objects as returned by the is_internal attribute () function.

is_safe_callable (0bj)
Check if an object is safely callable. Per default a function is considered safe unless the unsafe_callable
attribute exists and is True. Override this method to alter the behavior, but this won’t affect the unsafe
decorator from this module.

class jinja2Z.sandbox.ImmutableSandboxedEnvironment ([options])
Works exactly like the regular SandboxedEnvironment but does not permit modifications on the builtin mutable
objects list, set, and dict by using the modifies known_mutable () function.

exception jinja2.sandbox.SecurityError (message=None)
Raised if a template tries to do something insecure if the sandbox is enabled.

jinja2.sandbox.unsafe (f)
Marks a function or method as unsafe.

@unsafe
def delete(self):
pass

jinja2.sandbox.is_internal_attribute (obj, attr)
Test if the attribute given is an internal python attribute. For example this function returns True for the func_code
attribute of python objects. This is useful if the environment method is_safe attribute () is overridden.

>>> from jinja2.sandbox import is_internal_attribute
>>> is_internal_attribute(str, "mro")

True

>>> is_internal_attribute(str, "upper")

False

jinja2.sandbox .modifies_known_mutable (0bj, attr)
This function checks if an attribute on a builtin mutable object (list, dict, set or deque) would modify it if called.
It also supports the “user”-versions of the objects (sets.Set, UserDict.* etc.) and with Python 2.6 onwards the
abstract base classes MutableSet, MutableMapping, and MutableSequence.

32 Chapter 3. Sandbox

Jinja Documentation (2.11.x), Release 2.11.2

>>> modifies_known_mutable ({}, "clear")
True

>>> modifies_known_mutable ({}, "keys")
False

>>> modifies_known_mutable([], "append")
True

>>> modifies_known_mutable([], "index")
False

If called with an unsupported object (such as unicode) False is returned.

>>> modifies_known_mutable ("foo", "upper")
False

Note

The Jinja sandbox alone is no solution for perfect security. Especially for web applications you have to keep in mind
that users may create templates with arbitrary HTML in so it’s crucial to ensure that (if you are running multiple users
on the same server) they can’t harm each other via JavaScript insertions and much more.

Also the sandbox is only as good as the configuration. We strongly recommend only passing non-shared resources to
the template and use some sort of whitelisting for attributes.

Also keep in mind that templates may raise runtime or compile time errors, so make sure to catch them.

3.2 Operator Intercepting

New in version 2.6.

For maximum performance Jinja will let operators call directly the type specific callback methods. This means that
it’s not possible to have this intercepted by overriding Environment.call (). Furthermore a conversion from
operator to special method is not always directly possible due to how operators work. For instance for divisions more
than one special method exist.

With Jinja 2.6 there is now support for explicit operator intercepting. This can be used to customize specific
operators as necessary. In order to intercept an operator one has to override the SandboxedEnvironment.
intercepted_binops attribute. Once the operator that needs to be intercepted is added to that set Jinja will
generate bytecode that calls the SandboxedEnvironment.call_binop () function. For unary operators the
unary attributes and methods have to be used instead.

The default implementation of SandboxedEnvironment.call binop will use the
SandboxedEnvironment .binop_table to translate operator symbols into callbacks performing the de-
fault operator behavior.

This example shows how the power (*) operator can be disabled in Jinja:

from jinja2.sandbox import SandboxedEnvironment
class MyEnvironment (SandboxedEnvironment) :
intercepted_binops = frozenset (['*x'])

def call_binop(self, context, operator, left, right):
if operator == "xx':

(continues on next page)

3.2. Operator Intercepting 33

Jinja Documentation (2.11.x), Release 2.11.2

(continued from previous page)

return self.undefined('the power operator is unavailable'

return SandboxedEnvironment.call_binop(self, context,
operator, left, right)

)

Make sure to always call into the super method, even if you are not intercepting the call. Jinja might internally call the

method to evaluate expressions.

34

Chapter 3. Sandbox

CHAPTER
FOUR

NATIVE PYTHON TYPES

The default Environment renders templates to strings. With Nat iveEnvironment, rendering a template pro-
duces a native Python type. This is useful if you are using Jinja outside the context of creating text files. For example,
your code may have an intermediate step where users may use templates to define values that will then be passed to a
traditional string environment.

4.1 Examples

Adding two values results in an integer, not a string with a number:

>>> env = NativeEnvironment ()

>>> t = env.from_string('{{ x + v }}")
>>> result = t.render (x=4, y=2)

>>> print (result)

6

>>> print (type (result))

int

Rendering list syntax produces a list:

>>> t = env.from_string('[{ or item in data %} {{ item + 1 }},{ ndfor %}]")
>>> result = t.render (data=range(5))

>>> print (result)

(1, 2, 3, 4, 5]

>>> print (type (result))

list

Rendering something that doesn’t look like a Python literal produces a string:

>>> t = env.from_string('{{ x }} « {{ v }}")
>>> result = t.render (x=4, y=2)

>>> print (result)

4 % 2

>>> print (type (result))

str

Rendering a Python object produces that object as long as it is the only node:

>>> class Foo:
def _ init_ (self, wvalue):
self.value = value

(continues on next page)

35

Jinja Documentation (2.11.x), Release 2.11.2

(continued from previous page)

>>> result = env.from_string('{{ x }}").render (x=Foo(15))
>>> print (type (result) . name_)
Foo

>>> print (result.value)
15

4.2 API

class jinja2.nativetypes.NativeEnvironment ([options])
An environment that renders templates to native Python types.

class jinja2.nativetypes.NativeTemplate ([options])

render (*args, **kwargs)
Render the template to produce a native Python type. If the result is a single node, its value is returned. Oth-
erwise, the nodes are concatenated as strings. If the result can be parsed with ast . literal_eval (),
the parsed value is returned. Otherwise, the string is returned.

36 Chapter 4. Native Python Types

https://docs.python.org/3/library/ast.html#ast.literal_eval

CHAPTER
FIVE

TEMPLATE DESIGNER DOCUMENTATION

This document describes the syntax and semantics of the template engine and will be most useful as reference to those
creating Jinja templates. As the template engine is very flexible, the configuration from the application can be slightly
different from the code presented here in terms of delimiters and behavior of undefined values.

5.1 Synopsis

A Jinja template is simply a text file. Jinja can generate any text-based format (HTML, XML, CSV, LaTeX, etc.). A
Jinja template doesn’t need to have a specific extension: .html, .xml, or any other extension is just fine.

A template contains variables and/or expressions, which get replaced with values when a template is rendered; and
tags, which control the logic of the template. The template syntax is heavily inspired by Django and Python.

Below is a minimal template that illustrates a few basics using the default Jinja configuration. We will cover the details
later in this document:

<!DOCTYPE html>
<html lang="en">

<head>
<title>My Webpage</title>
</head>
<body>
<ul id="navigation">
{% for item in navigation %}
{{ item.caption }}</1li>
% endfor %}

<hl>My Webpage</hl>
{{ a_variable }}

{# a comment #}
</body>
</html>

The following example shows the default configuration settings. An application developer can change the syntax
configuration from {$ foo %} to <% foo %>, or something similar.

There are a few kinds of delimiters. The default Jinja delimiters are configured as follows:

e (% ... %} for Statements
e {{ ... }} for Expressions to print to the template output
e {# ... #} for Comments not included in the template output

37

Jinja Documentation (2.11.x), Release 2.11.2

e # ... ## for Line Statements

5.1.1 Template File Extension

As stated above, any file can be loaded as a template, regardless of file extension. Adding a . jinja extension,
like user.html. jinja may make it easier for some IDEs or editor plugins, but is not required. Autoescaping,
introduced later, can be applied based on file extension, so you’ll need to take the extra suffix into account in that case.

Another good heuristic for identifying templates is that they are in a templates folder, regardless of extension. This
is a common layout for projects.

5.2 Variables

Template variables are defined by the context dictionary passed to the template.

You can mess around with the variables in templates provided they are passed in by the application. Variables may have
attributes or elements on them you can access too. What attributes a variable has depends heavily on the application
providing that variable.

You can use a dot (.) to access attributes of a variable in addition to the standard Python __getitem___ “subscript”
syntax ([1).

The following lines do the same thing:

{{ foo.bar }}
{{ foo['bar']l }}

It’s important to know that the outer double-curly braces are not part of the variable, but the print statement. If you
access variables inside tags don’t put the braces around them.

If a variable or attribute does not exist, you will get back an undefined value. What you can do with that kind of value
depends on the application configuration: the default behavior is to evaluate to an empty string if printed or iterated
over, and to fail for every other operation.

Implementation
For the sake of convenience, foo .bar in Jinja does the following things on the Python layer:
* check for an attribute called bar on foo (getattr (foo, 'bar'))
* if there is not, check for an item 'bar"' in foo (foo.__getitem__ ('bar'))
« if there is not, return an undefined object.
foo['bar'] works mostly the same with a small difference in sequence:
* check for an item 'bar' infoo. (foo.__getitem__ ('bar'))
« if there is not, check for an attribute called bar on foo. (getattr (foo, 'bar'))
« if there is not, return an undefined object.

This is important if an object has an item and attribute with the same name. Additionally, the at t = () filter only looks
up attributes.

38 Chapter 5. Template Designer Documentation

Jinja Documentation (2.11.x), Release 2.11.2

5.3 Filters

Variables can be modified by filters. Filters are separated from the variable by a pipe symbol (|) and may have
optional arguments in parentheses. Multiple filters can be chained. The output of one filter is applied to the next.

For example, {{ name|striptags|title }} will remove all HTML Tags from variable name and title-case
the output (title (striptags (name))).

Filters that accept arguments have parentheses around the arguments, just like a function call. For example: { {
listx|join (', ') }} willjoin alist with commas (str.join (', ', listx)).

The List of Builtin Filters below describes all the builtin filters.

5.4 Tests

Beside filters, there are also so-called “tests” available. Tests can be used to test a variable against a common expres-
sion. To test a variable or expression, you add is plus the name of the test after the variable. For example, to find out
if a variable is defined, you can do name is defined, which will then return true or false depending on whether
name is defined in the current template context.

Tests can accept arguments, too. If the test only takes one argument, you can leave out the parentheses. For example,
the following two expressions do the same thing:

{% if loop.index is divisibleby 3 %}

% if loop.index is divisibleby (3) }

The List of Builtin Tests below describes all the builtin tests.

5.5 Comments

To comment-out part of a line in a template, use the comment syntax which is by default set to {# ... #}. This
is useful to comment out parts of the template for debugging or to add information for other template designers or
yourself:

{# note: commented-out template because we no longer use this
{%$ for user 1in users %}
% endfor %}

#}

5.6 Whitespace Control

In the default configuration:
* asingle trailing newline is stripped if present
 other whitespace (spaces, tabs, newlines etc.) is returned unchanged

If an application configures Jinja to trim_blocks, the first newline after a template tag is removed automatically (like
in PHP). The Istrip_blocks option can also be set to strip tabs and spaces from the beginning of a line to the start of a
block. (Nothing will be stripped if there are other characters before the start of the block.)

5.3. Filters 39

Jinja Documentation (2.11.x), Release 2.11.2

With both trim_blocks and Istrip_blocks enabled, you can put block tags on their own lines, and the entire block line
will be removed when rendered, preserving the whitespace of the contents. For example, without the trim_blocks and
Istrip_blocks options, this template:

<div>
{% if True %}
yay
{% endif %}
</div>

gets rendered with blank lines inside the div:

<div>

yay

</div>

But with both trim_blocks and Istrip_blocks enabled, the template block lines are removed and other whitespace is
preserved:

<diwv>

yay
</div>

You can manually disable the Istrip_blocks behavior by putting a plus sign (+) at the start of a block:

<div>
{$+ if something %}yay{¢ endif %)}
</div>

You can also strip whitespace in templates by hand. If you add a minus sign (-) to the start or end of a block (e.g. a
For tag), a comment, or a variable expression, the whitespaces before or after that block will be removed:

{% for item in seq -3}
{{ item }}
{%- endfor %}

This will yield all elements without whitespace between them. If seq was a list of numbers from 1 to 9, the output
would be 123456789.

If Line Statements are enabled, they strip leading whitespace automatically up to the beginning of the line.

By default, Jinja also removes trailing newlines. @ To keep single trailing newlines, configure Jinja to
keep_trailing_newline.

Note

You must not add whitespace between the tag and the minus sign.

valid:

’{%— if foo -%}...{% endif %)
invalid:

’{% - if foo - %}...{% endif ¢}

40 Chapter 5. Template Designer Documentation

Jinja Documentation (2.11.x), Release 2.11.2

5.7 Escaping

It is sometimes desirable — even necessary — to have Jinja ignore parts it would otherwise handle as variables or blocks.
For example, if, with the default syntax, you want to use { { as a raw string in a template and not start a variable, you
have to use a trick.

The easiest way to output a literal variable delimiter ({ {) is by using a variable expression:

("L)

For bigger sections, it makes sense to mark a block raw. For example, to include example Jinja syntax in a template,
you can use this snippet:

o3

% raw %}

{% for item in seq %}
{{ item }}</1i>
{% endfor %}

% endraw 3%}

Note

Minus sign at the end of {$ raw —-%} tag cleans all the spaces and newlines preceding the first character of your
raw data.

5.8 Line Statements

If line statements are enabled by the application, it’s possible to mark a line as a statement. For example, if the line
statement prefix is configured to #, the following two examples are equivalent:

for item in seq
<1li>{{ item }}</1li>

endfor

{% for item in seq %}
<1li>{{ item }}</1li>
% endfor %}

The line statement prefix can appear anywhere on the line as long as no text precedes it. For better readability,
statements that start a block (such as for, if, elif etc.) may end with a colon:

for item in seq:

endfor

Note

Line statements can span multiple lines if there are open parentheses, braces or brackets:

5.7. Escaping 41

Jinja Documentation (2.11.x), Release 2.11.2

for href, caption in [('index.html', 'Index'),
('about.html', 'About')]:
{{ caption }}</1li>
endfor

Since Jinja 2.2, line-based comments are available as well. For example, if the line-comment prefix is configured to
be ##, everything from ## to the end of the line is ignored (excluding the newline sign):

for item in seq:
{{ item }}</1li> ## this comment is ignored
endfor

5.9 Template Inheritance

The most powerful part of Jinja is template inheritance. Template inheritance allows you to build a base “skeleton”
template that contains all the common elements of your site and defines blocks that child templates can override.

Sounds complicated but is very basic. It’s easiest to understand it by starting with an example.

5.9.1 Base Template

This template, which we’ll call base.html, defines a simple HTML skeleton document that you might use for a
simple two-column page. It’s the job of “child” templates to fill the empty blocks with content:

<!DOCTYPE html>
<html lang="en">
<head>
{% block head %}
<link rel="stylesheet" href="style.css" />
<title>{% block title %}{% endblock %} - My Webpage</title>
% endblock %)
</head>
<body>
<div id="content">{% block content $%}{% endblock %}</div>
<div id="footer">
{% block footer %}
© Copyright 2008 by you.
% endblock %}
</div>
</body>
</html>

In this example, the {$ block %} tags define four blocks that child templates can fill in. All the block tag does is
tell the template engine that a child template may override those placeholders in the template.

block tags can be inside other blocks such as if, but they will always be executed regardless of if the if block is
actually rendered.

42 Chapter 5. Template Designer Documentation

Jinja Documentation (2.11.x), Release 2.11.2

5.9.2 Child Template

A child template might look like this:

extends "base.html" %}
block title $%}Index{% endblock %}
block head %}
{{ super() }}
<style type="text/css">
.important { color: #336699; }

_
do oo oo

</style>

{% endblock %}

{% block content %}
<hl>Index</h1l>

<p class="important">
Welcome to my awesome homepage.
</p>
endblock %}

~
oo

The {$ extends %} tagis the key here. It tells the template engine that this template “extends” another template.
When the template system evaluates this template, it first locates the parent. The extends tag should be the first tag in
the template. Everything before it is printed out normally and may cause confusion. For details about this behavior
and how to take advantage of it, see Null-Master Fallback. Also a block will always be filled in regardless of whether
the surrounding condition is evaluated to be true or false.

The filename of the template depends on the template loader. For example, the FileSystemLoader allows you to
access other templates by giving the filename. You can access templates in subdirectories with a slash:

% extends "layout/default.html" %}

But this behavior can depend on the application embedding Jinja. Note that since the child template doesn’t define the
footer block, the value from the parent template is used instead.

You can’t define multiple {$ block %} tags with the same name in the same template. This limitation exists
because a block tag works in “both” directions. That is, a block tag doesn’t just provide a placeholder to fill - it also
defines the content that fills the placeholder in the parent. If there were two similarly-named {$ block %} tagsin
a template, that template’s parent wouldn’t know which one of the blocks’ content to use.

If you want to print a block multiple times, you can, however, use the special self variable and call the block with that
name:

<title>{% block title %}{% endblock %j}</title>
<hl>{{ self.title() }}</hl>
{% block body %}{% endblock %}

5.9.3 Super Blocks

It’s possible to render the contents of the parent block by calling super (). This gives back the results of the parent
block:

{% block sidebar %}
<h3>Table Of Contents</h3>

{{ super() }}
{% endblock $%}

5.9. Template Inheritance 43

Jinja Documentation (2.11.x), Release 2.11.2

5.9.4 Nesting extends

In the case of multiple levels of {$ extends %}, super references may be chained (as in super. super ())to
skip levels in the inheritance tree.

For example:

parent.tmpl
body: {% block body $%}Hi from parent.{% endblock %}

child.tmpl
{% extends "parent.tmpl" %}
{% block body %}Hi from child. {{ super() }}{% endblock %}

grandchildl.tmpl
% extends "child.tmpl" %}
{% block body $%$}Hi from grandchildl. {% endblock %}

grandchild2.tmpl
{% extends "child.tmpl" %}
{% block body $%}Hi from grandchild2. {{ super.super() }} {% endblock %}

Rendering child.tmpl will give body: Hi from child. Hi from parent.
Rendering grandchildl.tmpl will give body: Hi from grandchildl.

Rendering grandchild2.tmpl will give body: Hi from grandchild2. Hi from parent.

5.9.5 Named Block End-Tags

Jinja allows you to put the name of the block after the end tag for better readability:

{% block sidebar %}

{% block inner_sidebar $%

% endblock inner_ sidebar %}
% endblock sidebar %}

However, the name after the endblock word must match the block name.

5.9.6 Block Nesting and Scope

Blocks can be nested for more complex layouts. However, per default blocks may not access variables from outer
scopes:

{% for item in seqg %}
<1li>{% block loop_item %}{{ item }}{% endblock $%}</1i>
{% endfor %}

This example would output empty <11i> items because ifem is unavailable inside the block. The reason for this is that
if the block is replaced by a child template, a variable would appear that was not defined in the block or passed to the
context.

Starting with Jinja 2.2, you can explicitly specify that variables are available in a block by setting the block to “scoped”
by adding the scoped modifier to a block declaration:

44 Chapter 5. Template Designer Documentation

Jinja Documentation (2.11.x), Release 2.11.2

% for item in seqg %}
<1li>{% block loop_item scoped %}{{ item }}{% endblock $}</1li>
{% endfor %}

oo

When overriding a block, the scoped modifier does not have to be provided.

5.9.7 Template Objects

Changed in version 2.4.

If a template object was passed in the template context, you can extend from that object as well. Assuming the calling
code passes a layout template as layout_template to the environment, this code works:

{% extends layout_template %}

Previously, the layout_template variable had to be a string with the layout template’s filename for this to work.

5.10 HTML Escaping

When generating HTML from templates, there’s always a risk that a variable will include characters that affect the
resulting HTML. There are two approaches:

a. manually escaping each variable; or
b. automatically escaping everything by default.

Jinja supports both. What is used depends on the application configuration. The default configuration is no automatic
escaping; for various reasons:

» Escaping everything except for safe values will also mean that Jinja is escaping variables known to not include
HTML (e.g. numbers, booleans) which can be a huge performance hit.

* The information about the safety of a variable is very fragile. It could happen that by coercing safe and unsafe
values, the return value is double-escaped HTML.

5.10.1 Working with Manual Escaping

If manual escaping is enabled, it’s your responsibility to escape variables if needed. What to escape? If you have
a variable that may include any of the following chars (>, <, &, or ") you SHOULD escape it unless the variable
contains well-formed and trusted HTML. Escaping works by piping the variable through the | e filter:

{{ user.usernamel|e }}

5.10.2 Working with Automatic Escaping
When automatic escaping is enabled, everything is escaped by default except for values explicitly marked as safe.
Variables and expressions can be marked as safe either in:

a. The context dictionary by the application with markupsafe.Markup

b. The template, with the | safe filter.

5.10. HTML Escaping 45

Jinja Documentation (2.11.x), Release 2.11.2

If a string that you marked safe is passed through other Python code that doesn’t understand that mark, it may get lost.
Be aware of when your data is marked safe and how it is processed before arriving at the template.

If a value has been escaped but is not marked safe, auto-escaping will still take place and result in double-escaped
characters. If you know you have data that is already safe but not marked, be sure to wrap it in Markup or use the
| safe filter.

Jinja functions (macros, super, self. BLOCKNAME) always return template data that is marked as safe.

String literals in templates with automatic escaping are considered unsafe because native Python strings (str,
unicode, basestring) are not MarkupSafe.Markup strings with an __html___ attribute.

5.11 List of Control Structures

A control structure refers to all those things that control the flow of a program - conditionals (i.e. if/elif/else), for-
loops, as well as things like macros and blocks. With the default syntax, control structures appear inside {$... %}
blocks.

5.11.1 For

Loop over each item in a sequence. For example, to display a list of users provided in a variable called users:

<hl>Members</hl>

- in users %}

{{ user.username|e }}</1li>
{% endfor %}

As variables in templates retain their object properties, it is possible to iterate over containers like dict:

<dl>
{% for key, value in my_dict.items () %}
<dt>{{ keyle }j}</dt>
<dd>{{ valuele }}</dd>
% endfor %}
</d1l>

Note, however, that Python dicts are not ordered; so you might want to either pass a sorted 1ist of tuple s —or
acollections.OrderedDict — to the template, or use the dictsort filter.

Inside of a for-loop block, you can access some special variables:

46 Chapter 5. Template Designer Documentation

Jinja Documentation (2.11.x), Release 2.11.2

Variable Description

loop.index The current iteration of the loop. (1 indexed)

loop.index0 The current iteration of the loop. (0 indexed)

loop.revindex The number of iterations from the end of the loop (1 indexed)

loop.revindex0 The number of iterations from the end of the loop (0 indexed)

loop. first True if first iteration.

loop.last True if last iteration.

loop.length The number of items in the sequence.

loop.cycle A helper function to cycle between a list of sequences. See the explanation below.
loop.depth Indicates how deep in a recursive loop the rendering currently is. Starts at level 1
loop.depth0O Indicates how deep in a recursive loop the rendering currently is. Starts at level 0
loop.previtem The item from the previous iteration of the loop. Undefined during the first iteration.
loop.nextitem The item from the following iteration of the loop. Undefined during the last iteration.
loop.changed(*val) | True if previously called with a different value (or not called at all).

Within a for-loop, it’s possible to cycle among a list of strings/variables each time through the loop by using the special
loop.cycle helper:

{% for row in rows %}
<1li class="{{ loop.cycle('odd', 'even') }}">{{ row }}</1li>
{% endfor %}

Since Jinja 2.1, an extra cycle helper exists that allows loop-unbound cycling. For more information, have a look at
the List of Global Functions.

Unlike in Python, it’s not possible to break or continue in a loop. You can, however, filter the sequence during iteration,
which allows you to skip items. The following example skips all the users which are hidden:

{% for user in users if not user.hidden %}
{{ user.username|e }}</1li>
{% endfor %}

The advantage is that the special loop variable will count correctly; thus not counting the users not iterated over.

If no iteration took place because the sequence was empty or the filtering removed all the items from the sequence,
you can render a default block by using else:

{% for user in users %}

<1li>{{ user.usernamel|e }}</1li>
{% else %}

no users found
{% endfor %}

Note that, in Python, else blocks are executed whenever the corresponding loop did not break. Since Jinja loops
cannot break anyway, a slightly different behavior of the else keyword was chosen.

It is also possible to use loops recursively. This is useful if you are dealing with recursive data such as sitemaps or
RDFa. To use loops recursively, you basically have to add the recursive modifier to the loop definition and call the
loop variable with the new iterable where you want to recurse.

The following example implements a sitemap with recursive loops:

<ul class="sitemap">
{%— for item in sitemap recursive $%}

(continues on next page)

5.11. List of Control Structures 47

Jinja Documentation (2.11.x), Release 2.11.2

(continued from previous page)

{{ item.title }}
{%— if item.children -%
<ul class="submenu">{{ loop (item.children) }}

{%— endif %)</1i>
{%— endfor %}

The loop variable always refers to the closest (innermost) loop. If we have more than one level of loops, we can rebind
the variable loop by writing { % set outer_loop = loop %} after the loop that we want to use recursively. Then, we can
call it using {{ outer_loop(...) }}

Please note that assignments in loops will be cleared at the end of the iteration and cannot outlive the loop scope.
Older versions of Jinja had a bug where in some circumstances it appeared that assignments would work. This is not
supported. See Assignments for more information about how to deal with this.

If all you want to do is check whether some value has changed since the last iteration or will change in the next
iteration, you can use previtem and nextitem:

{% for value in values %}
% if loop.previtem is defined and value > loop.previtem $}
The value just increased!
{% endif %}
{{ value }}
{% if loop.nextitem is defined and loop.nextitem > value $}

The value will increase even more!
{% endif %}
% endfor %}

If you only care whether the value changed at all, using changed is even easier:

{% for entry in entries %}
% if loop.changed(entry.category) %}
<h2>{{ entry.category }}</h2>
% endif %)
<p>{{ entry
% endfor %}

.message }}</p>

511.2 If

The if statement in Jinja is comparable with the Python if statement. In the simplest form, you can use it to test if a
variable is defined, not empty and not false:

% if users %}

% for user in users
<1li>{{ user.usernamel|e }}</1i>
{% endfor %}

{% endif %}

For multiple branches, elif and else can be used like in Python. You can use more complex Expressions there, too:

{% if kenny.sick %}
Kenny 1is sick.
% elif kenny.dead %}

(continues on next page)

48 Chapter 5. Template Designer Documentation

Jinja Documentation (2.11.x), Release 2.11.2

(continued from previous page)

You killed Kenny! You bastard!!!
% else 3%}

Kenny looks okay --- so far
% endif %)

If can also be used as an inline expression and for loop filtering.

5.11.3 Macros

Macros are comparable with functions in regular programming languages. They are useful to put often used idioms
into reusable functions to not repeat yourself (“DRY”).

Here’s a small example of a macro that renders a form element:

{% macro input (name, value='"', type='text', size=20) -%}
<input type="{{ type }}" name="{{ name }}" value="{{
valuel|e }}" size="{{ size }}">
{%- endmacro %}

The macro can then be called like a function in the namespace:

<p>{{ input ('username') }}</p>
<p>{{ input ('password', type='password') }}</p>

If the macro was defined in a different template, you have to import it first.
Inside macros, you have access to three special variables:

varargs If more positional arguments are passed to the macro than accepted by the macro, they end up in the special
varargs variable as a list of values.

kwargs Like varargs but for keyword arguments. All unconsumed keyword arguments are stored in this special
variable.

caller 1If the macro was called from a call tag, the caller is stored in this variable as a callable macro.

Macros also expose some of their internal details. The following attributes are available on a macro object:

name The name of the macro. { { input.name }} will print input.

arguments A tuple of the names of arguments the macro accepts.

defaults A tuple of default values.

catch_kwargs This is true if the macro accepts extra keyword arguments (i.e.: accesses the special kwargs variable).
catch_varargs This is true if the macro accepts extra positional arguments (i.e.: accesses the special varargs variable).
caller This is true if the macro accesses the special caller variable and may be called from a call tag.

If a macro name starts with an underscore, it’s not exported and can’t be imported.

5.11.4 Call

In some cases it can be useful to pass a macro to another macro. For this purpose, you can use the special call block.
The following example shows a macro that takes advantage of the call functionality and how it can be used:

5.11. List of Control Structures 49

Jinja Documentation (2.11.x), Release 2.11.2

N

{% macro render_dialog(title, class
<div class="{{ class }}">
<h2>{{ title }}</h2>
<div class="contents">
{{ caller () }}
</div>
</div>
{%—- endmacro %}

'dialog') -%}

U

% call render_dialog('Hello World') %}
This is a simple dialog rendered by using a macro and
a call block.

¢ endcall 3}

It’s also possible to pass arguments back to the call block. This makes it useful as a replacement for loops. Generally
speaking, a call block works exactly like a macro without a name.

Here’s an example of how a call block can be used with arguments:

{% macro dump_users (users) —%}

{%- for user in users %}
<p>{{ user.usernamel|e }}</p>{{ caller (user) }}</1li>
{%— endfor %}

{%- endmacro %}

{% call (user) dump_users (list_of_user) %}
<dl>
<dl>Realname</d1l>
<dd>{{ user.realnamel|e }}</dd>
<dl>Description</d1l>
<dd>{{ user.description }}</dd>
</d1l>
{% endcall $%}

5.11.5 Filters

Filter sections allow you to apply regular Jinja filters on a block of template data. Just wrap the code in the special
filter section:

o3

¢ filter upper %}
This text becomes uppercase
{% endfilter %}

5.11.6 Assighments

Inside code blocks, you can also assign values to variables. Assignments at top level (outside of blocks, macros or
loops) are exported from the template like top level macros and can be imported by other templates.

Assignments use the sef tag and can have multiple targets:

% set navigation = [('index.html', 'Index'), ('about.html', 'About')] %}
{% set key, value = call_something() %}

50 Chapter 5. Template Designer Documentation

Jinja Documentation (2.11.x), Release 2.11.2

Scoping Behavior

Please keep in mind that it is not possible to set variables inside a block and have them show up outside of it. This
also applies to loops. The only exception to that rule are if statements which do not introduce a scope. As a result the
following template is not going to do what you might expect:

{% set iterated = false %}
% for item in seqg %)
{{ item }}
{% set iterated = true %}
% endfor %)
% if not iterated %} did not iterate {% endif %}

It is not possible with Jinja syntax to do this. Instead use alternative constructs like the loop else block or the special
loop variable:

{% for item in seqg %}
{{ item }}

% else %}
did not iterate

% endfor %)

As of version 2.10 more complex use cases can be handled using namespace objects which allow propagating of
changes across scopes:

% set ns = namespace
{%$ for item in i

{% if item.check_
% set ns.found = true %}
{% endif %}
* {{ item.title }}
% endfor %}
Found item having something: {{ ns.found }}

Note that the ob j . at t r notation in the set tag is only allowed for namespace objects; attempting to assign an attribute
on any other object will raise an exception.

New in version 2.10: Added support for namespace objects

5.11.7 Block Assignments

New in version 2.8.

Starting with Jinja 2.8, it’s possible to also use block assignments to capture the contents of a block into a variable
name. This can be useful in some situations as an alternative for macros. In that case, instead of using an equals sign
and a value, you just write the variable name and then everything until {$ endset %} is captured.

Example:

% set navigation $}
Index
Downloads

% endset %}

The navigation variable then contains the navigation HTML source.

5.11. List of Control Structures 51

Jinja Documentation (2.11.x), Release 2.11.2

Changed in version 2.10.
Starting with Jinja 2.10, the block assignment supports filters.

Example:

% set reply | wordwrap %}
You wrote:

o3

% endset

5.11.8 Extends

The extends tag can be used to extend one template from another. You can have multiple extends tags in a file, but only
one of them may be executed at a time.

See the section about Template Inheritance above.

5.11.9 Blocks

Blocks are used for inheritance and act as both placeholders and replacements at the same time. They are documented
in detail in the Template Inheritance section.

5.11.10 Include

The include tag is useful to include a template and return the rendered contents of that file into the current namespace:

o

% include 'header.html'
Body
{% include 'footer.html'

oo

}

oo
—

Included templates have access to the variables of the active context by default. For more details about context behavior
of imports and includes, see /mport Context Behavior.

From Jinja 2.2 onwards, you can mark an include with ignore missing; in which case Jinja will ignore the
statement if the template to be included does not exist. When combined with with or without context, it must
be placed before the context visibility statement. Here are some valid examples:

o3

% include "sidebar.html" ignore missing %}
{% include "sidebar.html" ignore missing with context 3}
¢ include "sidebar.html" ignore missing without context 3%}

New in version 2.2.

You can also provide a list of templates that are checked for existence before inclusion. The first template that exists
will be included. If ignore missing is given, it will fall back to rendering nothing if none of the templates exist,
otherwise it will raise an exception.

Example:
% include |['page_detailed.html', 'page.html'] %}
% include ['special_ sidebar.html', 'sidebar.html'] ignore missing 3%}

Changed in version 2.4: If a template object was passed to the template context, you can include that object using
include.

52 Chapter 5. Template Designer Documentation

Jinja Documentation (2.11.x), Release 2.11.2

5.11.11 Import

Jinja supports putting often used code into macros. These macros can go into different templates and get imported
from there. This works similarly to the import statements in Python. It’s important to know that imports are cached
and imported templates don’t have access to the current template variables, just the globals by default. For more details
about context behavior of imports and includes, see Import Context Behavior.

There are two ways to import templates. You can import a complete template into a variable or request specific macros
/ exported variables from it.

Imagine we have a helper module that renders forms (called forms. html):

{% macro input (name, value='"', type='text') -%}
<input type="{{ type }}" value="{{ valuele }}" name="{{ name }}">
{%- endmacro %}

S lue="" ~OW S

e= ’ oW

{%— macro textarea (name, V , cols=40) —-%}
<textarea name="{{ name }}" rows="{{ rows }}" cols="{{ cols
}}">{{ valuel|e }}</textarea>
{%- endmacro %}

The easiest and most flexible way to access a template’s variables and macros is to import the whole template module
into a variable. That way, you can access the attributes:

¢ import 'forms.html' as forms %}

<dl>
<dt>Username</dt>
<dd>{{ forms.input ('username') }}</dd>
<dt>Password</dt>
<dd>{{ forms.input ('password', type='password') }}</dd>
</d1l>
<p>{{ forms.textarea ('comment') }}</p>

Alternatively, you can import specific names from a template into the current namespace:

{% from 'forms.html' import input as input_field, textarea %}
<d1l>

<dt>Username</dt>

<dd>{{ input_field('username') }}</dd>

<dt>Password</dt>

<dd>{{ input_field('password', type='password') }}</dd>
</d1l>
<p>{{ textarea ('comment') }}</p>

Macros and variables starting with one or more underscores are private and cannot be imported.

Changed in version 2.4: If a template object was passed to the template context, you can import from that object.

5.12 Import Context Behavior

By default, included templates are passed the current context and imported templates are not. The reason for this is
that imports, unlike includes, are cached; as imports are often used just as a module that holds macros.

This behavior can be changed explicitly: by adding with context or without context to the import/include directive, the
current context can be passed to the template and caching is disabled automatically.

Here are two examples:

5.12. Import Context Behavior 53

Jinja Documentation (2.11.x), Release 2.11.2

o3

¢ from 'forms.html' import input with context 3}

o3

% include 'header.html' without context %)}

Note

In Jinja 2.0, the context that was passed to the included template did not include variables defined in the template. As
a matter of fact, this did not work:

{% for box in boxes %}
% include "render_ box.html" $}
{% endfor %}

The included template render_box.html is not able to access box in Jinja 2.0. As of Jinja 2.1, render_box.
html is able to do so.

5.13 Expressions

Jinja allows basic expressions everywhere. These work very similarly to regular Python; even if you’re not working
with Python you should feel comfortable with it.

5.13.1 Literals

The simplest form of expressions are literals. Literals are representations for Python objects such as strings and
numbers. The following literals exist:

"Hello World" Everything between two double or single quotes is a string. They are useful whenever you need a
string in the template (e.g. as arguments to function calls and filters, or just to extend or include a template).

42/123_456 Integers are whole numbers without a decimal part. The ‘_’ character can be used to separate groups
for legibility.

42.23/42.1e2/123_456.789 Floating point numbers can be written using a ‘" as a decimal mark. They can
also be written in scientific notation with an upper or lower case ‘e’ to indicate the exponent part. The *_’
character can be used to separate groups for legibility, but cannot be used in the exponent part.

['1list', 'of', 'objects'] Everything between two brackets is a list. Lists are useful for storing sequential
data to be iterated over. For example, you can easily create a list of links using lists and tuples for (and with) a

for loop:

{% for href, caption in [('index.html', 'Index'), ('about.html', 'About'),
('downloads.html', 'Downloads')] %}
{{ caption }}</1li>
{% endfor %}

('tuple', 'of', 'values') Tuples are like lists that cannot be modified (“immutable”). If a tuple only has
one item, it must be followed by a comma (('1-tuple"',)). Tuples are usually used to represent items of
two or more elements. See the list example above for more details.

{'dict': 'of', 'key': ‘'and', 'value': ‘'pairs'} A dict in Python is a structure that com-
bines keys and values. Keys must be unique and always have exactly one value. Dicts are rarely used in
templates; they are useful in some rare cases such as the xmlattr () filter.

54 Chapter 5. Template Designer Documentation

Jinja Documentation (2.11.x), Release 2.11.2

true/ false true is always true and false is always false.

Note

The special constants true, false, and none are indeed lowercase. Because that caused confusion in the past, (True
used to expand to an undefined variable that was considered false), all three can now also be written in title case (True,
False, and None). However, for consistency, (all Jinja identifiers are lowercase) you should use the lowercase versions.

5.13.2 Math

Jinja allows you to calculate with values. This is rarely useful in templates but exists for completeness’ sake. The
following operators are supported:

+ Adds two objects together. Usually the objects are numbers, but if both are strings or lists, you can concatenate
them this way. This, however, is not the preferred way to concatenate strings! For string concatenation, have a
look-see at the ~ operator. {{ 1 + 1 }}is2.

— Subtract the second number from the firstone. {{ 3 — 2 }}is 1.

/ Divide two numbers. The return value will be a floating point number. {{ 1 / 2 }}is{{ 0.5 }}.
// Divide two numbers and return the truncated integer result. {{ 20 // 7 }}is 2.

% Calculate the remainder of an integer division. {{ 11 % 7 }} is 4.

* Multiply the left operand with the right one. {{ 2 % 2 }} would return 4. This can also be used to repeat a
string multiple times. {{ '=' % 80 }} would print a bar of 80 equal signs.

*% Raise the left operand to the power of the right operand. { { 2+x%3 }} would return 8.

5.13.3 Comparisons

== Compares two objects for equality.

'= Compares two objects for inequality.

> true if the left hand side is greater than the right hand side.

>= true if the left hand side is greater or equal to the right hand side.
< true if the left hand side is lower than the right hand side.

<= true if the left hand side is lower or equal to the right hand side.

5.13.4 Logic

For 1if statements, for filtering, and i £ expressions, it can be useful to combine multiple expressions:
and Return true if the left and the right operand are true.

or Return true if the left or the right operand are true.

not negate a statement (see below).

(expr) Parentheses group an expression.

5.13. Expressions 55

Jinja Documentation (2.11.x), Release 2.11.2

Note

The is and in operators support negation using an infix notation, too: foo is not barand foo not in bar
instead of not foo is barandnot foo in bar. All other expressions require a prefix notation: not (foo
and bar) .

5.13.5 Other Operators

The following operators are very useful but don’t fit into any of the other two categories:

in Perform a sequence / mapping containment test. Returns true if the left operand is contained in the right. {{ 1
in [1, 2, 3] }} would, for example, return true.

is Performs a rest.
| Applies a filter.
~ Converts all operands into strings and concatenates them.
{{ "Hello " ~ name ~ "!" }} would return (assuming name is setto ' John') Hello John!.

() Call a callable: {{ post.render () }}. Inside of the parentheses you can use positional arguments and
keyword arguments like in Python:

{{ post.render (user, full=true) }}.

./ [1 Get an attribute of an object. (See Variables)

5.13.6 If Expression

It is also possible to use inline if expressions. These are useful in some situations. For example, you can use this to
extend from one template if a variable is defined, otherwise from the default layout template:

o3

% extends layout_template if layout_template is defined else 'master.html' $}

The general syntax is <do something> if <something is true> else <do something else>.

The else part is optional. If not provided, the else block implicitly evaluates into an Unde f ined object (regardless of
what unde fined in the environment is set to):

{{ "[{}]".format (page.title) if page.title }}

5.13.7 Python Methods

You can also use any of the methods of defined on a variable’s type. The value returned from the method invocation is
used as the value of the expression. Here is an example that uses methods defined on strings (where page.title is
a string):

’{{ page.title.capitalize() }}

This works for methods on user-defined types. For example, if variable £ of type Foo has a method bar defined on
it, you can do the following:

’{{ f.bar (value) 1}}

56 Chapter 5. Template Designer Documentation

Jinja Documentation (2.11.x), Release 2.11.2

Operator methods also work as expected. For example, $ implements printf-style for strings:

’{{ "Hello, %s!" % name }}

Although you should prefer the . format method for that case (which is a bit contrived in the context of rendering a
template):

’{{ "Hello, {}!".format (name) }}

5.14 List of Builtin Filters

abs () float () lower () round () tojson ()
attr () forceescape () map () safe () trim()
batch () format () max () select () truncate ()
capitalize() groupby () min () selectattr() unique ()
center () indent () pprint () slice() upper ()
default () int () random () sort () urlencode ()
dictsort () join () reject () string() urlize()
escape () last () rejectattr () striptags () wordcount ()
filesizeformat () length () replace () sum () wordwrap ()
first() 1list () reverse () title() xmlattr ()
abs (x,/)

Return the absolute value of the argument.

attr (obj, name)
Get an attribute of an object. foo|attr ("bar") works like foo . bar just that always an attribute is returned
and items are not looked up.

See Notes on subscriptions for more details.

batch (value, linecount, fill_with=None)
A filter that batches items. It works pretty much like slice just the other way round. It returns a list of lists with
the given number of items. If you provide a second parameter this is used to fill up missing items. See this
example:

<table>
{%— for row in items|batch (3, ' ') %}
<tr>
{%— for column in row %}
<td>{{ column }}</td>
{%- endfor %}
</tr>
{%- endfor %}
</table>

capitalize (s)
Capitalize a value. The first character will be uppercase, all others lowercase.

center (value, width=80)
Centers the value in a field of a given width.

default (value, default_value=", boolean=False)
If the value is undefined it will return the passed default value, otherwise the value of the variable:

5.14. List of Builtin Filters 57

Jinja Documentation (2.11.x), Release 2.11.2

{{ my_variable|default ('my_variable is not defined') }}

This will output the value of my_variable if the variable was defined, otherwise 'my_variable is not
defined"'. If you want to use default with variables that evaluate to false you have to set the second parameter
to frue:

{{ '"'"|default ('the string was empty', true) }}

Changed in version 2.11: It’s now possible to configure the Environment with ChainableUndefined to
make the default filter work on nested elements and attributes that may contain undefined values in the chain
without getting an UndefinedError.

Aliases d

dictsort (value, case_sensitive=False, by="key’, reverse=False)
Sort a dict and yield (key, value) pairs. Because python dicts are unsorted you may want to use this function to
order them by either key or value:

% for item in mydict|dictsort %}
sort the dict by key, case insensitive

% for item in mydict|dictsort (reverse=true) %}
sort the dict by key, case insensitive, reverse order

% for item in mydict|dictsort (true) %}
sort the dict by key, case sensitive

{% for item in mydict|dictsort (false, 'value') %}
sort the dict by value, case insensitive

escape (s)
Convert the characters &, <, >, ¢, and ” in string s to HTML-safe sequences. Use this if you need to display text
that might contain such characters in HTML. Marks return value as markup string.

Aliases e

filesizeformat (value, binary=False)
Format the value like a ‘human-readable’ file size (i.e. 13 kB, 4.1 MB, 102 Bytes, etc). Per default decimal
prefixes are used (Mega, Giga, etc.), if the second parameter is set to True the binary prefixes are used (Mebi,
Gibi).

first (seq)
Return the first item of a sequence.

float (value, default=0.0)
Convert the value into a floating point number. If the conversion doesn’t work it will return 0.0. You can

override this default using the first parameter.

forceescape (value)
Enforce HTML escaping. This will probably double escape variables.

format (value, *args, **kwargs)
Apply the given values to a printf-style format string, like string % values.

{{ "%$s, %s!"|format (greeting, name) }}
Hello, World!

In most cases it should be more convenient and efficient to use the $ operator or str. format ().

58 Chapter 5. Template Designer Documentation

https://docs.python.org/library/stdtypes.html#printf-style-string-formatting
https://docs.python.org/3/library/stdtypes.html#str.format

Jinja Documentation (2.11.x), Release 2.11.2

)

{{ "%s, %s!" % (greeting, name) }}
{{ "{}, {}!".format (greeting, name) }}

groupby (value, attribute)

Group a sequence of objects by an attribute using Python’s itertools.groupby (). The attribute can use
dot notation for nested access, like "address.city". Unlike Python’s groupby, the values are sorted first
so only one group is returned for each unique value.

For example, a list of User objects with a city attribute can be rendered in groups. In this example, grouper
refers to the city value of the group.

{% for city, items in users|groupby ("city") %}
{{ city }}
{% for user in items %}
<1i>{{ user.name }}
{% endfor $%}
</1li>

% endfor $%j)

groupby yields namedtuples of (grouper, list), which can be used instead of the tuple unpacking
above. grouper is the value of the attribute, and 11 st is the items with that value.

{?% for group in users|groupby ("city") &}
<1li>{{ group.grouper }}: {{ group.list]|join(", ") }}
% endfor $%j)

Changed in version 2.6: The attribute supports dot notation for nested access.

indent (s, width=4, first=False, blank=False, indentfirst=None)

Return a copy of the string with each line indented by 4 spaces. The first line and blank lines are not indented
by default.

Parameters
* width — Number of spaces to indent by.
» first — Don’t skip indenting the first line.
* blank — Don’t skip indenting empty lines.
Changed in version 2.10: Blank lines are not indented by default.

Rename the indentfirst argumentto first.

int (value, default=0, base=10)

Convert the value into an integer. If the conversion doesn’t work it will return 0. You can override this default
using the first parameter. You can also override the default base (10) in the second parameter, which handles
input with prefixes such as Ob, 0o and Ox for bases 2, 8 and 16 respectively. The base is ignored for decimal
numbers and non-string values.

join (value, d=", attribute=None)

Return a string which is the concatenation of the strings in the sequence. The separator between elements is an
empty string per default, you can define it with the optional parameter:

{{ [1, 2, 3]|join("|") }}
-> 1123

{({ [1, 2, 3][join }}
-> 123

5.14. List of Builtin Filters 59

https://docs.python.org/3/library/itertools.html#itertools.groupby

Jinja Documentation (2.11.x), Release 2.11.2

It is also possible to join certain attributes of an object:

{{ users|join(', ', attribute='username') }}

New in version 2.6: The attribute parameter was added.

last (seq)
Return the last item of a sequence.

Note: Does not work with generators. You may want to explicitly convert it to a list:

{{ data | selectattr('name', '==', 'Jinja') | list | last }}

length (0bj,/)
Return the number of items in a container.

Aliases count

list (value)
Convert the value into a list. If it was a string the returned list will be a list of characters.

lower (s)
Convert a value to lowercase.

map (*args, **kwargs)
Applies a filter on a sequence of objects or looks up an attribute. This is useful when dealing with lists of objects
but you are really only interested in a certain value of it.

The basic usage is mapping on an attribute. Imagine you have a list of users but you are only interested in a list
of usernames:

’Users on this page: {{ users|map(attribute='username') |join(', ") }}

You can specify a default value to use if an object in the list does not have the given attribute.

’{{ users|map (attribute="username", default="Anonymous") |join(", ") }}

Alternatively you can let it invoke a filter by passing the name of the filter and the arguments afterwards. A good
example would be applying a text conversion filter on a sequence:

’Users on this page: {{ titles|map('lower") |join(', ") }}

Similar to a generator comprehension such as:

(u.username for u in users)
(u.username or "Anonymous" for u in users)
(do_lower (x) for x in titles)

Changed in version 2.11.0: Added the default parameter.
New in version 2.7.

max (value, case_sensitive=False, attribute=None)
Return the largest item from the sequence.

{({ [1, 2, 3]Imax }}
-> 3

Parameters

* case_sensitive - Treat upper and lower case strings as distinct.

60 Chapter 5. Template Designer Documentation

Jinja Documentation (2.11.x), Release 2.11.2

* attribute — Get the object with the max value of this attribute.

min (value, case_sensitive=False, attribute=None)
Return the smallest item from the sequence.

{({ [1, 2, 3]Imin }}
-> 1

Parameters
* case_sensitive — Treat upper and lower case strings as distinct.
* attribute - Get the object with the min value of this attribute.
pprint (value, verbose=False)
Pretty print a variable. Useful for debugging.

With Jinja 1.2 onwards you can pass it a parameter. If this parameter is truthy the output will be more verbose
(this requires pretty)

random (seq)
Return a random item from the sequence.

reject (*args, **kwargs)
Filters a sequence of objects by applying a test to each object, and rejecting the objects with the test succeeding.

If no test is specified, each object will be evaluated as a boolean.

Example usage:

’ {{ numbers|reject ("odd") }}

Similar to a generator comprehension such as:

’(n for n in numbers if not test_odd(n))

New in version 2.7.

rejectattr (*args, **kwargs)

Filters a sequence of objects by applying a test to the specified attribute of each object, and rejecting the objects
with the test succeeding.

If no test is specified, the attribute’s value will be evaluated as a boolean.

{{ users|rejectattr ("is_active") }}
{{ users|rejectattr ("email", "none") }}

Similar to a generator comprehension such as:

(u for user in users if not user.is_active)
(u for user in users if not test_none (user.email))

New in version 2.7.

replace (s, old, new, count=None)
Return a copy of the value with all occurrences of a substring replaced with a new one. The first argument is the
substring that should be replaced, the second is the replacement string. If the optional third argument count is
given, only the first count occurrences are replaced:

5.14. List of Builtin Filters 61

Jinja Documentation (2.11.x), Release 2.11.2

{{ "Hello World"|replace("Hello", "Goodbye") }}
-> Goodbye World

{{ "aaaaargh"|replace("a", "d'oh, ", 2) }}
-> d'oh, d'oh, aaargh

reverse (value)

Reverse the object or return an iterator that iterates over it the other way round.

round (value, precision=0, method="common’)

Round the number to a given precision. The first parameter specifies the precision (default is 0), the second the
rounding method:

e 'common' rounds either up or down
* 'ceil' always rounds up
e '"floor' always rounds down

If you don’t specify a method ' common ' is used.

{{ 42.55|round }}
-> 43.0

{{ 42.55|round (1, 'floor') }}
-> 42.5

Note that even if rounded to O precision, a float is returned. If you need a real integer, pipe it through int:

{{ 42.55|round|int }}
-> 43

safe (value)

Mark the value as safe which means that in an environment with automatic escaping enabled this variable will
not be escaped.

select (*args, **kwargs)

Filters a sequence of objects by applying a test to each object, and only selecting the objects with the test
succeeding.

If no test is specified, each object will be evaluated as a boolean.

Example usage:

{{ numbers|select ("odd") }}
s|select ("odd") }}

rs|select ("divisibleby", 3) }}
(
(

5| select ("lessthan", 42) }}
ings|select ("equalto", "mystring") }}

Similar to a generator comprehension such as:

(n for n in numbers if test_odd(n))

(n for n in numbers if test_divisibleby (n, 3))

New in version 2.7.

selectattr (*args, **kwargs)

Filters a sequence of objects by applying a test to the specified attribute of each object, and only selecting the
objects with the test succeeding.

If no test is specified, the attribute’s value will be evaluated as a boolean.

62

Chapter 5. Template Designer Documentation

Jinja Documentation (2.11.x), Release 2.11.2

Example usage:

{{ users
{{ us

|selectattr ("is_active") }}
rs|selectattr ("email", "none") }}

Similar to a generator comprehension such as:

(u for user in users if user.is_active)
(u for user in users if test_none (user.email))

New in version 2.7.

slice (value, slices, fill_with=None)

Slice an iterator and return a list of lists containing those items. Useful if you want to create a div containing
three ul tags that represent columns:

<div class="columnwrapper">

{%— for column in items|slice(3) %}
<ul class="column-{{ loop.index }}">
{%— for item in column %}

{{ item }}</1li>
{%— endfor %}

{%- endfor %}
</div>

If you pass it a second argument it’s used to fill missing values on the last iteration.

sort (value, reverse=Fualse, case_sensitive=False, attribute=None)
Sort an iterable using Python’s sorted ().

{$ for city in cities|sort %}

% endfor %}

Parameters
» reverse — Sort descending instead of ascending.

* case_sensitive — When sorting strings, sort upper and lower case separately.

* attribute — When sorting objects or dicts, an attribute or key to sort by. Can use dot
notation like "address.city". Can be a list of attributes like "age, name™".

The sort is stable, it does not change the relative order of elements that compare equal. This makes it is possible
to chain sorts on different attributes and ordering.

% for user in users|sort (attribute="name")

|sort (reverse=true, attribute="age") $}

o)

% endfor %}

As a shortcut to chaining when the direction is the same for all attributes, pass a comma separate list of attributes.

{% for user users|sort (attribute="age,name") %}

{% endfor %}

5.14. List of Builtin Filters 63

https://docs.python.org/3/library/functions.html#sorted

Jinja Documentation (2.11.x), Release 2.11.2

Changed in version 2.11.0: The att ribute parameter can be a comma separated list of attributes, e.g. "age,
name".

Changed in version 2.6: The att ribute parameter was added.

string (object)
Make a string unicode if it isn’t already. That way a markup string is not converted back to unicode.

striptags (value)
Strip SGML/XML tags and replace adjacent whitespace by one space.

sum (iterable, attribute=None, start=0)
Returns the sum of a sequence of numbers plus the value of parameter ‘start’ (which defaults to 0). When the
sequence is empty it returns start.

It is also possible to sum up only certain attributes:

Total: {{ items|sum(attribute="price') }}

Changed in version 2.6: The attribute parameter was added to allow suming up over attributes. Also the start
parameter was moved on to the right.

title (s)
Return a titlecased version of the value. I.e. words will start with uppercase letters, all remaining characters are
lowercase.

tojson (value, indent=None)
Dumps a structure to JSON so that it’s safe to use in <script> tags. It accepts the same arguments and returns
a JSON string. Note that this is available in templates through the |tojson filter which will also mark the
result as safe. Due to how this function escapes certain characters this is safe even if used outside of <script>
tags.

The following characters are escaped in strings:

This makes it safe to embed such strings in any place in HTML with the notable exception of double quoted
attributes. In that case single quote your attributes or HTML escape it in addition.

The indent parameter can be used to enable pretty printing. Set it to the number of spaces that the structures
should be indented with.

Note that this filter is for use in HTML contexts only.
New in version 2.9.

trim (value, chars=None)
Strip leading and trailing characters, by default whitespace.

truncate (s, length=255, killwords=False, end="...", leeway=None)
Return a truncated copy of the string. The length is specified with the first parameter which defaults to 255.
If the second parameter is t rue the filter will cut the text at length. Otherwise it will discard the last word. If
the text was in fact truncated it will append an ellipsis sign (" . . . "). If you want a different ellipsis sign than
" . .." you can specify it using the third parameter. Strings that only exceed the length by the tolerance margin
given in the fourth parameter will not be truncated.

64 Chapter 5. Template Designer Documentation

Jinja Documentation (2.11.x), Release 2.11.2

{{ "foo bar baz qux"|truncate(9) }}
-> "foo..."
{{ "foo bar baz gqux"|truncate (9, True) }}
-> "foo ba..."
{{ "foo bar baz qux"|truncate(ll) }}
-> "foo bar baz qux"
{{ "foo bar baz gux"|truncate(ll, False, '...', 0) }}
-> "foo bar..."

The default leeway on newer Jinja versions is 5 and was 0 before but can be reconfigured globally.

unique (value, case_sensitive=False, attribute=None)
Returns a list of unique items from the given iterable.

{{ ['"foo', 'bar', 'foobar', 'FooBar']|unique|list }}
-> ['foo', 'bar', 'foobar']

The unique items are yielded in the same order as their first occurrence in the iterable passed to the filter.
Parameters
* case_sensitive — Treat upper and lower case strings as distinct.
* attribute - Filter objects with unique values for this attribute.

upper (s)
Convert a value to uppercase.

urlencode (value)
Quote data for use in a URL path or query using UTF-8.

Basic wrapper around urllib.parse.quote () when given a string, or urllib.parse.
urlencode () for a dict or iterable.

Parameters value — Data to quote. A string will be quoted directly. A dict or iterable of (key,
value) pairs will be joined as a query string.

When given a string, “/” is not quoted. HTTP servers treat “/” and “%2F” equivalently in paths. If you need
quoted slashes, use the | replace ("/", "%2F") filter.

New in version 2.7.

urlize (value, trim_url_limit=None, nofollow=False, target=None, rel=None)
Converts URLs in plain text into clickable links.

If you pass the filter an additional integer it will shorten the urls to that number. Also a third argument exists
that makes the urls “nofollow”:

{{ mytext|urlize (40, true) }}
links are shortened to 40 chars and defined with rel="nofollow"

If target is specified, the target attribute will be added to the <a> tag:

{{ mytext|urlize (40, target='_blank') }}

Changed in version 2.8+: The target parameter was added.

wordcount (s)
Count the words in that string.

wordwrap (s, width=79, break_long_words=True, wrapstring=None, break_on_hyphens=True)
Wrap a string to the given width. Existing newlines are treated as paragraphs to be wrapped separately.

5.14. List of Builtin Filters 65

https://docs.python.org/3/library/urllib.parse.html#urllib.parse.quote
https://docs.python.org/3/library/urllib.parse.html#urllib.parse.urlencode
https://docs.python.org/3/library/urllib.parse.html#urllib.parse.urlencode

Jinja Documentation (2.11.x), Release 2.11.2

Parameters
* s — Original text to wrap.
* width — Maximum length of wrapped lines.
* break_long_words — If a word is longer than width, break it across lines.
* break_on_hyphens — If a word contains hyphens, it may be split across lines.

* wrapstring - String to join each wrapped line. Defaults to Environment.

newline_sequence.
Changed in version 2.11: Existing newlines are treated as paragraphs wrapped separately.
Changed in version 2.11: Added the break_on_hyphens parameter.

Changed in version 2.7: Added the wrapstring parameter.

xmlattr (d, autospace=True)

Create an SGML/XML attribute string based on the items in a dict. All values that are neither none nor undefined
are automatically escaped:

<ul{{ {'class':
tid':

'my_list', 'missing': none,
'"list—-%d'|format (variable) } |xmlattr }}>

Results in something like this:

<ul class="my_list" id="1list-42">

As you can see it automatically prepends a space in front of the item if the filter returned something unless the
second parameter is false.

5.15 List of Builtin Tests

boolean () even () integer () ne () string()
callable () false () iterable () none () true ()
defined() float () le() number () undefined()
divisibleby () ge () lower () odd () upper ()
eq() gt () 1t() sameas ()

escaped () in{() mapping () sequence ()

boolean (value)

Return true if the object is a boolean value.

New in version 2.11.

callable (0bj,/)

Return whether the object is callable (i.e., some kind of function).

Note that classes are callable, as are instances of classes with a __call__ () method.

defined (value)

Return true if the variable is defined:

66

Chapter 5. Template Designer Documentation

Jinja Documentation (2.11.x), Release 2.11.2

{% if variable is defined %}

value of variable: {{ variable }}
% else %}

variable is not defined
{% endif %}

See the default () filter for a simple way to set undefined variables.

divisibleby (value, num)
Check if a variable is divisible by a number.

eq(a,b,/)
Same as a==Db.

Aliases ==, equalto

escaped (value)
Check if the value is escaped.

even (value)
Return true if the variable is even.

false (value)
Return true if the object is False.

New in version 2.11.

float (value)
Return true if the object is a float.

New in version 2.11.

ge (a,b,/)
Same as a >=b.
Aliases >=
gt (a,b,/)

Same asa>b.
Aliases >, greaterthan

in (value, seq)
Check if value is in seq.

New in version 2.10.

integer (value)
Return true if the object is an integer.

New in version 2.11.

iterable (value)
Check if it’s possible to iterate over an object.

le(a, b,/)
Same as a <=b.

Aliases <=

lower (value)
Return true if the variable is lowercased.

1t (a, b,/)
Same asa<b.

5.15. List of Builtin Tests 67

Jinja Documentation (2.11.x), Release 2.11.2

Aliases <, lessthan

mapping (value)

Return true if the object is a mapping (dict etc.).

New in version 2.6.

ne(a, b,/)

Same as a !=b.

Aliases !=

none (value)

Return true if the variable is none.

number (value)

Return true if the variable is a number.

odd (value)

Return true if the variable is odd.

sameas (value, other)

Check if an object points to the same memory address than another object:

% if foo.attribute is sameas false %}
the foo attribute really is the "False' singleton
% endif %)

sequence (value)

Return true if the variable is a sequence. Sequences are variables that are iterable.

string (value)

Return true if the object is a string.

true (value)

Return true if the object is True.

New in version 2.11.

undefined (value)

Like defined () but the other way round.

upper (value)

Return true if the variable is uppercased.

5.16 List of Global Functions

The following functions are available in the global scope by default:

range ([smrt], stop[, step])

Return a list containing an arithmetic progression of integers. range (i, Jj) returns [1, i+1, i+2,

., J-17; start (!) defaults to 0. When step is given, it specifies the increment (or decrement). For example,
range (4) and range (0, 4, 1) return [0, 1, 2, 3].Theend pointis omitted! These are exactly the
valid indices for a list of 4 elements.

This is useful to repeat a template block multiple times, e.g. to fill a list. Imagine you have 7 users in the list but
you want to render three empty items to enforce a height with CSS:

68

Chapter 5. Template Designer Documentation

Jinja Documentation (2.11.x), Release 2.11.2

{% for user in users %}
<1li>{{ user.username }}</1li>
% endfor %}
{% for number in range (10 - users|count) %}
<1li class="empty">...</1li>
% endfor %}

lipsum (n=>5, html=True, min=20, max=100)
Generates some lorem ipsum for the template. By default, five paragraphs of HTML are generated with each
paragraph between 20 and 100 words. If html is False, regular text is returned. This is useful to generate simple
contents for layout testing.

dict (**items)

A convenient alternative to dict literals. { ' foo': 'bar'} is the same as dict (foo="'bar').

class cycler (*items)
Cycle through values by yielding them one at a time, then restarting once the end is reached.

Similar to 1oop.cycle, but can be used outside loops or across multiple loops. For example, render a list of
folders and files in a list, alternating giving them “odd” and “even” classes.

)

% set row_class = cycler ("odd", "even") %}

<ul class="browser">

{% for folder in folders
<1li class="folder {{ r }p">{{ folder }}
% endfor %}

{% for file in f1
<1li class="file {{
%}

es

row_class.next () }}">{{ file }}

o)

% endfor

Parameters items — Each positional argument will be yielded in the order given for each cycle.

New in version 2.1.
property current

Return the current item. Equivalent to the item that will be returned next time next () is called.
next ()

Return the current item, then advance current to the next item.

reset ()
Resets the current item to the first item.

class joiner (sep=","’)
A tiny helper that can be used to “join”” multiple sections. A joiner is passed a string and will return that string
every time it’s called, except the first time (in which case it returns an empty string). You can use this to join

things:

{% set pi joiner ("|") %}

{% if categories %} {{ pipe() }}
Categories: {{ categories|join(", ") }}

{% endif 3}

{% if author %} {{ pipe() }}
Author: {{ author() }}

{% endif 3}

(continues on next page)

5.16. List of Global Functions

69

Jinja Documentation (2.11.x), Release 2.11.2

(continued from previous page)

% if can_edit %} {{ pipe() }}
Edit
% endif %)

New in version 2.1.

class namespace (...)
Creates a new container that allows attribute assignment using the {$ set %} tag:

% set ns = namespace () %}
% set ns.foo = 'bar' %}

The main purpose of this is to allow carrying a value from within a loop body to an outer scope. Initial values
can be provided as a dict, as keyword arguments, or both (same behavior as Python’s dict constructor):

o)

% set
{% for 1
{%

ound=false) %}

{% endif %}
* {{ item.title }}
% endfor %}
Found item having something: {{ ns.found }}

New in version 2.10.

5.17 Extensions

The following sections cover the built-in Jinja extensions that may be enabled by an application. An application could
also provide further extensions not covered by this documentation; in which case there should be a separate document
explaining said extensions.

5.17.1 i18n

If the i/8n Extension is enabled, it’s possible to mark text in the template as translatable. To mark a section as
translatable, use a t rans block:

{% trans $%}Hello, {{ user }}!{% endtrans %}

Inside the block, no statements are allowed, only text and simple variable tags.

Variable tags can only be a name, not attribute access, filters, or other expressions. To use an expression, bind it to a
name in the t rans tag for use in the block.

{% trans user=user.username %}Hello, {{ user }}!{% endtrans %}

To bind more than one expression, separate each with a comma (,).

{% trans book_title=book.title, author=author.name
This is {{ book_title }} by {{ author }}
{% endtrans %}

oo

}

To pluralize, specify both the singular and plural forms separated by the pluralize tag.

70 Chapter 5. Template Designer Documentation

Jinja Documentation (2.11.x), Release 2.11.2

{% trans count=list|length %}

There is {{ count }} {{ name }} object.
{% pluralize %}

There are {{ count }} {{ name }} objects.
% endtrans %}

By default, the first variable in a block is used to determine whether to use singular or plural form. If that isn’t correct,
specify the variable used for pluralizing as a parameter to pluralize.

{% trans ..., user_count=users|length $}...
{% pluralize user_count %}...{% endtrans 3}

When translating blocks of text, whitespace and linebreaks result in hard to read and error-prone translation strings. To
avoid this, a trans block can be marked as trimmed, which will replace all linebreaks and the whitespace surrounding
them with a single space and remove leading and trailing whitespace.

{% trans trimmed book_
This is {{ book_title }}.
You should read it!

{% endtrans %}

This results in This is % (book_title)s. You should read it'! in the translation file.
If trimming is enabled globally, the not r immed modifier can be used to disable it for a block.
New in version 2.10: The t rimmed and not rimmed modifiers have been added.
It’s possible to translate strings in expressions with these functions:
e gettext: translate a single string
* ngettext: translate a pluralizable string
e _: alias for gettext

You can print a translated string like this:

’{{ _("Hello, World!") }}

To use placeholders, use the format filter.

’{{ _("Hello, % (user)s!")|format (user=user.username) }}

Always use keyword arguments to format, as other languages may not use the words in the same order.

If New Style Gettext calls are activated, using placeholders is easier. Formatting is part of the gettext call instead
of using the format filter.

{{ gettext ('"Hello World!") }}
{{ gettext ('Hello % (name)s!', name='World') }}
{{ ngettext ('%(num)d apple', '$(num)d apples', apples|count) }}

The ngettext function’s format string automatically receives the count as a num parameter in addition to the given
parameters.

5.17.2 Expression Statement

If the expression-statement extension is loaded, a tag called do is available that works exactly like the regular variable
expression ({{ ... }});exceptitdoesn’t print anything. This can be used to modify lists:

5.17. Extensions 71

Jinja Documentation (2.11.x), Release 2.11.2

{% do navigation.append('a string') %}

5.17.3 Loop Controls

If the application enables the Loop Controls, it’s possible to use break and continue in loops. When break is reached,
the loop is terminated; if continue is reached, the processing is stopped and continues with the next iteration.

Here’s a loop that skips every second item:

{% for user in users %}
{%— if loop.index is even %}{% continue 3%}{% endif 3}

o3

% endfor %}

Likewise, a loop that stops processing after the 10th iteration:

{% for user in users %}
{$— if loop.index >= 10 %}{% break %}{% endif 9%}
{%— endfor %)}

Note that 1oop . index starts with 1, and 1oop . index0 starts with O (See: For).

5.17.4 Debug Statement

If the Debug Extension is enabled, a {$ debug %} tag will be available to dump the current context as well as the
available filters and tests. This is useful to see what’s available to use in the template without setting up a debugger.

<pre>{$ debug ¢}</pre>

{'context': {'cycler': <class 'jinja2.utils.Cycler'>,
.7
'namespace': <class 'jinjaz2.utils.Namespace'>},
'filters': ['abs', 'attr', 'batch', 'capitalize', 'center', 'count',6 'd’',
., 'urlencode', 'urlize', 'wordcount', 'wordwrap', 'xmlattr'],
'tests': ['!=', '<', '<=', '==', '>' I'>=', 'callable', 'defined',

., 'odd', 'sameas', 'sequence', 'string', 'undefined', 'upper']}

5.17.5 With Statement

New in version 2.3.

The with statement makes it possible to create a new inner scope. Variables set within this scope are not visible outside
of the scope.

With in a nutshell:

{% with %}

% set foo = 42 3%}

{{ foo }} foo is 42 here
{% endwith %}
foo is not visible here any longer

Because it is common to set variables at the beginning of the scope, you can do that within the with statement. The
following two examples are equivalent:

72 Chapter 5. Template Designer Documentation

Jinja Documentation (2.11.x), Release 2.11.2

{% with foo = 42
{{ foo }}
{% endwith %}

oo

}

% with %)
% set foo = 42 %}
{{ foo }}

% endwith %)

An important note on scoping here. In Jinja versions before 2.9 the behavior of referencing one variable to another
had some unintended consequences. In particular one variable could refer to another defined in the same with block’s
opening statement. This caused issues with the cleaned up scoping behavior and has since been improved. In particular
in newer Jinja versions the following code always refers to the variable a from outside the with block:

{% with a={}, b=a.attribute $%}...{% endwith $%}

In earlier Jinja versions the b attribute would refer to the results of the first attribute. If you depend on this behavior
you can rewrite it to use the set tag:

% with a={} %}
{% set b =
{% endwith %}

a.attribute %}

Extension

In older versions of Jinja (before 2.9) it was required to enable this feature with an extension. It’s now enabled by
default.

5.18 Autoescape Overrides

New in version 2.4.
If you want you can activate and deactivate the autoescaping from within the templates.

Example:

o3

¢ autoescape true 3}
Autoescaping is active within this block
¢ endautoescape %}

{% autoescape false 3%}
Autoescaping is inactive within this block
{% endautoescape %}

After an endautoescape the behavior is reverted to what it was before.

Extension

In older versions of Jinja (before 2.9) it was required to enable this feature with an extension. It’s now enabled by
default.

5.18. Autoescape Overrides 73

Jinja Documentation (2.11.x), Release 2.11.2

74 Chapter 5. Template Designer Documentation

CHAPTER
SIX

EXTENSIONS

Jinja supports extensions that can add extra filters, tests, globals or even extend the parser. The main motivation of
extensions is to move often used code into a reusable class like adding support for internationalization.

6.1 Adding Extensions

Extensions are added to the Jinja environment at creation time. Once the environment is created additional extensions
cannot be added. To add an extension pass a list of extension classes or import paths to the extensions parameter of
the Environment constructor. The following example creates a Jinja environment with the i18n extension loaded:

’ jinja_env = Environment (extensions=['Jjinja2.ext.i18n'])

6.2 i18n Extension

Import name: jinja2.ext.i18n

The 118n extension can be used in combination with gettext or Babel. When it’s enabled, Jinja provides a trans
statement that marks a block as translatable and calls gettext.

After enabling, an application has to provide get text and ngettext functions, either globally or when rendering.
A _ () function is added as an alias to the gettext function.

6.2.1 Environment Methods

After enabling the extension, the environment provides the following additional methods:

jinja2.Environment.install_gettext_translations (translations, newstyle=False)
Installs a translation globally for the environment. The t ranslations object must implement gettext and
ngettext (or ugettext and ungettext for Python 2). gettext .NullTranslations, gettext.
GNUTranslations, and Babels Translations are supported.

Changed in version 2.5: Added new-style gettext support.

jinja2.Environment.install_null_translations (newstyle=False)
Install no-op gettext functions. This is useful if you want to prepare the application for internationalization but
don’t want to implement the full system yet.

Changed in version 2.5: Added new-style gettext support.

75

https://docs.python.org/3/library/gettext.html
http://babel.pocoo.org/
https://docs.python.org/3/library/gettext.html#gettext.NullTranslations
https://docs.python.org/3/library/gettext.html#gettext.GNUTranslations
https://docs.python.org/3/library/gettext.html#gettext.GNUTranslations
http://babel.pocoo.org/

Jinja Documentation (2.11.x), Release 2.11.2

jinja2.Environment.install_gettext_callables (gettext, ngettext, newstyle=False)
Install the given gettext and ngettext callables into the environment. They should behave exactly like
gettext.gettext () and gettext.ngettext () (or ugettext and ungettext for Python 2).

If newstyle is activated, the callables are wrapped to work like newstyle callables. See New Style Gettext for
more information.

New in version 2.5: Added new-style gettext support.

jinja2.Environment .uninstall_gettext_translations ()
Uninstall the environment’s globally installed translation.

jinja2.Environment .extract_translations (source)
Extract localizable strings from the given template node or source.

For every string found this function yields a (1ineno, function, message) tuple, where:
* lineno is the number of the line on which the string was found.

e function isthe name of the get text function used (if the string was extracted from embedded Python
code).

* message is the string itself (unicode on Python 2), or a tuple of strings for functions with multiple
arguments.

If Babel is installed, see Babel Integration to extract the strings.

For a web application that is available in multiple languages but gives all the users the same language (for example,
multilingual forum software installed for a French community), the translation may be installed when the environment
is created.

translations = get_gettext_translations|()
env = Environment (extensions=["jinja2.ext.i18n"])
env.install_ gettext_translations (translations)

The get_gettext_translations function would return the translator for the current configuration, for example
by using gettext.find.

The usage of the i18n extension for template designers is covered in the template documentation.

6.2.2 Whitespace Trimming

New in version 2.10.

Within {$ trans %} blocks, it can be useful to trim line breaks and whitespace so that the block of text looks like
a simple string with single spaces in the translation file.

Linebreaks and surrounding whitespace can be automatically trimmed by enabling the ext . 118n.trimmed policy.

6.2.3 New Style Gettext

New in version 2.5.
New style gettext calls are less to type, less error prone, and support autoescaping better.

You can use ‘“new style” gettext calls by setting env.newstyle_gettext = True or passing
newstyle=True to env.install_translations. They are fully supported by the Babel extraction
tool, but might not work as expected with other extraction tools.

With standard gettext calls, string formatting is a separate step done with the | format filter. This requires
duplicating work for ngettext calls.

76 Chapter 6. Extensions

https://docs.python.org/3/library/gettext.html#gettext.gettext
https://docs.python.org/3/library/gettext.html#gettext.ngettext
http://babel.pocoo.org/

Jinja Documentation (2.11.x), Release 2.11.2

{{ gettext ("Hello, World!") }}
{{ gettext ("Hello, % (name)s!")|format (name=name) }}
{{ ngettext (
"% (num)d apple", "$(num)d apples", apples|count
) | format (num=apples|count) }}

New style get text make formatting part of the call, and behind the scenes enforce more consistency.

{{ gettext ("Hello, World!"™) }}
{{ gettext ("Hello, % (name)s!", name=name) }}
{{ ngettext ("% (num)d apple", "%$(num)d apples", apples|count) }}

The advantages of newstyle gettext are:
* There’s no separate formatting step, you don’t have to remember to use the | format filter.

* Only named placeholders are allowed. This solves a common problem translators face because positional place-
holders can’t switch positions meaningfully. Named placeholders always carry semantic information about what
value goes where.

 String formatting is used even if no placeholders are used, which makes all strings use a consistent format.
Remember to escape any raw percent signs as $%, such as 100%%.

 The translated string is marked safe, formatting performs escaping as needed. Mark a parameter as | safe if it
has already been escaped.

6.3 Expression Statement
Import name: jinja2.ext.do

The “do” aka expression-statement extension adds a simple do tag to the template engine that works like a variable
expression but ignores the return value.

6.4 Loop Controls
Import name: jinja2.ext.loopcontrols

This extension adds support for break and continue in loops. After enabling, Jinja provides those two keywords
which work exactly like in Python.

6.5 With Statement

Import name: jinja2.ext.with_

Changed in version 2.9: This extension is now built-in and no longer does anything.

6.6 Autoescape Extension

Import name: jinja2.ext.autoescape

Changed in version 2.9: This extension was removed and is now built-in. Enabling the extension no longer does
anything.

6.3. Expression Statement 77

Jinja Documentation (2.11.x), Release 2.11.2

6.7 Debug Extension

Import name: jinja2.ext.debug

Adds a {$ debug %} tag to dump the current context as well as the available filters and tests. This is useful to see
what’s available to use in the template without setting up a debugger.

6.8 Writing Extensions

By writing extensions you can add custom tags to Jinja. This is a non-trivial task and usually not needed as the default
tags and expressions cover all common use cases. The i18n extension is a good example of why extensions are useful.
Another one would be fragment caching.

When writing extensions you have to keep in mind that you are working with the Jinja template compiler which
does not validate the node tree you are passing to it. If the AST is malformed you will get all kinds of compiler or
runtime errors that are horrible to debug. Always make sure you are using the nodes you create correctly. The API
documentation below shows which nodes exist and how to use them.

6.9 Example Extensions

6.9.1 Cache

The following example implements a cache tag for Jinja by using the cachelib library:

from jinja2 import nodes
from jinja2.ext import Extension

class FragmentCacheExtension (Extension) :
a set of names that trigger the extension.
tags = {"cache"}

def _ init_ (self, environment):
super (FragmentCacheExtension, self)._ _init__ (environment)

add the defaults to the environment
environment .extend (fragment_cache_prefix="", fragment_cache=None)

def parse(self, parser):
the first token is the token that started the tag. In our case
we only listen to ' 'cache''' so this will be a name token with
‘cache’ as value. We get the line number so that we can give
that line number to the nodes we create by hand.
lineno = next (parser.stream).lineno

now we parse a single expression that is used as cache key.
args = [parser.parse_expression()]

1f there is a comma, the user provided a timeout. If not use
None as second parameter.
if parser.stream.skip_if ("comma") :

args.append (parser.parse_expression())

(continues on next page)

78 Chapter 6. Extensions

https://github.com/pallets/cachelib

Jinja Documentation (2.11.x), Release 2.11.2

(continued from previous page)

else:
args.append(nodes.Const (None))

now we parse the body of the cache block up to “endcache’ and
drop the needle (which would always be ‘endcache’ in that case)
body = parser.parse_statements (["name:endcache"], drop_needle=True)

now return a "CallBlock® node that calls our _cache_support
helper method on this extension.
return nodes.CallBlock (
self.call_method("_cache_support", args), [], [], body
) .set_lineno (lineno)

def _cache_support (self, name, timeout, caller):
"""Helper callback."""
key = self.environment.fragment_cache_prefix + name

try to load the block from the cache
if there is no fragment in the cache, render it and store
it in the cache.
rv = self.environment.fragment_cache.get (key)
if rv is not None:
return rv
rv = caller ()
self.environment.fragment_cache.add (key, rv, timeout)
return rv

And here is how you use it in an environment:

from jinja2 import Environment
from cachelib import SimpleCache

env = Environment (extensions=[FragmentCacheExtension])
env.fragment_cache = SimpleCache ()

Inside the template it’s then possible to mark blocks as cacheable. The following example caches a sidebar for 300
seconds:

o3

% cache 'sidebar', 300 %}
<div class="sidebar">
</div>

{% endcache 2%}

6.9.2 Inline gettext

The following example demonstrates using Extension. filter stream() to parse calls to the _ () gettext
function inline with static data without needing Jinja blocks.

<hl>_ (Welcome)</h1l>
<p>_(This is a paragraph)</p>

It requires the 118n extension to be loaded and configured.

6.9. Example Extensions 79

Jinja Documentation (2.11.x), Release 2.11.2

—%— coding: utf-8 —x*-—
import re

from jinja2.exceptions import TemplateSyntaxError
from jinja2.ext import Extension

from jinja2.lexer import count_newlines

from jinja2.lexer import Token

_outside_re = re.compile (r"\\? (gettext|_)\ (")
_inside_re = re.compile(r"\\2[()]1™)

class InlineGettext (Extension) :
"""This extension implements support for inline gettext blocks::

<hl>_ (Welcome)</hl>
<p>_(This is a paragraph)</p>

Requires the 118n extension to be loaded and configured.
mrmamn

def filter_stream(self, stream):
paren_stack = 0

for token in stream:

if token.type != "data":
yield token
continue
pos = 0
lineno = token.lineno
while 1:
if not paren_stack:
match = _outside_re.search(token.value, pos)
else:
match = _inside_re.search(token.value, pos)
if match is None:
break

new_pos = match.start ()
if new_pos > pos:
preval = token.value[pos:new_pos]
yield Token(lineno, "data", preval)
lineno += count_newlines (preval)
gtok = match.group()
if gtok[0] == "\\":
yield Token (lineno, "data", gtok[1l:])
elif not paren_stack:
yield Token(lineno, "block_begin", None)

yield Token(lineno, "name", "trans")
yield Token(lineno, "block_end", None)
paren_stack = 1
else:
if gtok == " (" or paren_stack > 1:
yield Token(lineno, "data", gtok)
paren_stack += gtok == ")" and -1 or 1

(continues on next page)

80 Chapter 6. Extensions

Jinja Documentation (2.11.x), Release 2.11.2

(continued from previous page)

if not paren_stack:
yield Token(lineno, "block_begin", None)
yield Token(lineno, "name", "endtrans")
yield Token(lineno, "block_end", None)
pos = match.end()

if pos < len(token.value):
yield Token(lineno, "data", token.value[pos:])

if paren_stack:
raise TemplateSyntaxError (
"unclosed gettext expression",
token.lineno,
stream.name,
stream. filename,

6.10 Extension API

6.10.1 Extension

Extensions always have to extend the jinjaZ2.ext.Extension class:

class jinja2.ext .Extension (environment)
Extensions can be used to add extra functionality to the Jinja template system at the parser level. Custom
extensions are bound to an environment but may not store environment specific data on self. The reason for this
is that an extension can be bound to another environment (for overlays) by creating a copy and reassigning the
environment attribute.

As extensions are created by the environment they cannot accept any arguments for configuration. One may
want to work around that by using a factory function, but that is not possible as extensions are identified by their
import name. The correct way to configure the extension is storing the configuration values on the environment.
Because this way the environment ends up acting as central configuration storage the attributes may clash which
is why extensions have to ensure that the names they choose for configuration are not too generic. prefix for
example is a terrible name, fragment_cache_prefix on the other hand is a good name as includes the
name of the extension (fragment cache).

identifier
The identifier of the extension. This is always the true import name of the extension class and must not be
changed.

tags
If the extension implements custom tags this is a set of tag names the extension is listening for.

attr (name, lineno=None)
Return an attribute node for the current extension. This is useful to pass constants on extensions to gener-
ated template code.

self.attr('_my_attribute', lineno=lineno)

call_method (name, args=None, kwargs=None, dyn_args=None, dyn_kwargs=None, lineno=None)
Call a method of the extension. This is a shortcut for attr () + jinjaZ.nodes.Call.

6.10. Extension API 81

Jinja Documentation (2.11.x), Release 2.11.2

filter_ stream (stream)
It’s passed a TokenStream that can be used to filter tokens returned. This method has to return an
iterable of Tokens, but it doesn’t have to return a TokenSt ream.

parse (parser)
If any of the t ags matched this method is called with the parser as first argument. The token the parser
stream is pointing at is the name token that matched. This method has to return one or a list of multiple
nodes.

preprocess (source, name, filename=None)
This method is called before the actual lexing and can be used to preprocess the source. The filename is
optional. The return value must be the preprocessed source.

6.10.2 Parser

The parser passed to Extension.parse () provides ways to parse expressions of different types. The following
methods may be used by extensions:

class jinja2.parser.Parser (environment, source, name=None, filename=None, state=None)
This is the central parsing class Jinja uses. It’s passed to extensions and can be used to parse expressions or
statements.

filename
The filename of the template the parser processes. This is not the load name of the template. For the load
name see name. For templates that were not loaded form the file system this is None.

name
The load name of the template.

stream
The current TokenStream

fail (msg, lineno=None, exc=<class ’jinja2.exceptions.TemplateSyntaxError’>)
Convenience method that raises exc with the message, passed line number or last line number as well as
the current name and filename.

free_identifier (lineno=None)
Return a new free identifier as TnternalName.

parse_assign_target (with_tuple=True, name_only=False, extra_end_rules=None,

with_namespace="False)
Parse an assignment target. As Jinja allows assignments to tuples, this function can parse all allowed

assignment targets. Per default assignments to tuples are parsed, that can be disable however by set-
ting with_tuple to False. If only assignments to names are wanted name_only can be set to True. The
extra_end_rules parameter is forwarded to the tuple parsing function. If with_namespace is enabled, a
namespace assignment may be parsed.

parse_expression (with_condexpr=True)
Parse an expression. Per default all expressions are parsed, if the optional with_condexpr parameter is set
to False conditional expressions are not parsed.

parse_statements (end_tokens, drop_needle=False)
Parse multiple statements into a list until one of the end tokens is reached. This is used to parse the body
of statements as it also parses template data if appropriate. The parser checks first if the current token is a
colon and skips it if there is one. Then it checks for the block end and parses until if one of the end_tokens
is reached. Per default the active token in the stream at the end of the call is the matched end token. If this
is not wanted drop_needle can be set to True and the end token is removed.

82 Chapter 6. Extensions

Jinja Documentation (2.11.x), Release 2.11.2

parse_tuple (simplified=False, with_condexpr=True, extra_end_rules=None, ex-
plicit_parentheses=False)
Works like parse_expression but if multiple expressions are delimited by a comma a Tuple node is

created. This method could also return a regular expression instead of a tuple if no commas where found.

The default parsing mode is a full tuple. If simplified is True only names and literals are parsed. The
no_condexpr parameter is forwarded to parse _expression ().

Because tuples do not require delimiters and may end in a bogus comma an extra hint is needed that marks
the end of a tuple. For example for loops support tuples between for and in. In that case the extra_end_rules
issetto ["name:in"'].

explicit_parentheses is true if the parsing was triggered by an expression in parentheses. This is used to
figure out if an empty tuple is a valid expression or not.

class jinja2.lexer.TokenStream (generator, name, filename)
A token stream is an iterable that yields Tokens. The parser however does not iterate over it but calls next ()
to go one token ahead. The current active token is stored as current.

current
The current Token.

__next_ ()
Go one token ahead and return the old one.

Use the built-in next () instead of calling this directly.

property eos
Are we at the end of the stream?

expect (expr)
Expect a given token type and return it. This accepts the same argument as jinja2.lexer.Token.
test ().

look ()
Look at the next token.

next_if (expr)
Perform the token test and return the token if it matched. Otherwise the return value is None.

push (foken)
Push a token back to the stream.

skip (n=1)
Got n tokens ahead.

skip_if (expr)
Like next_if () but only returns True or False.

class jinja2.lexer.Token
Token class.

lineno
The line number of the token

type
The type of the token. This string is interned so you may compare it with arbitrary strings using the is
operator.

value
The value of the token.

6.10. Extension API 83

https://docs.python.org/3/library/functions.html#next

Jinja Documentation (2.11.x), Release 2.11.2

test (expr)
Test a token against a token expression. This can either be a token type or
'token_type:token_value'. This can only test against string values and types.

test_any (*iterable)
Test against multiple token expressions.

There is also a utility function in the lexer module that can count newline characters in strings:

jinja2.lexer.count_newlines (value)
Count the number of newline characters in the string. This is useful for extensions that filter a stream.

6.10.3 AST

The AST (Abstract Syntax Tree) is used to represent a template after parsing. It’s build of nodes that the compiler then
converts into executable Python code objects. Extensions that provide custom statements can return nodes to execute
custom Python code.

The list below describes all nodes that are currently available. The AST may change between Jinja versions but will
stay backwards compatible.

For more information have a look at the repr of jinjaZ2.Environment.parse ().

class jinja2.nodes.Node
Baseclass for all Jinja nodes. There are a number of nodes available of different types. There are four major
types:

e Stmt: statements

* Expr: expressions

* Helper: helper nodes

e Template: the outermost wrapper node

All nodes have fields and attributes. Fields may be other nodes, lists, or arbitrary values. Fields are passed to
the constructor as regular positional arguments, attributes as keyword arguments. Each node has two attributes:
lineno (the line number of the node) and environment. The environment attribute is set at the end of the parsing
process for all nodes automatically.

find (node_type)
Find the first node of a given type. If no such node exists the return value is None.

find_all (node_type)
Find all the nodes of a given type. If the type is a tuple, the check is performed for any of the tuple items.

iter_child_nodes (exclude=None, only=None)
Iterates over all direct child nodes of the node. This iterates over all fields and yields the values of they are
nodes. If the value of a field is a list all the nodes in that list are returned.

iter_fields (exclude=None, only=None)
This method iterates over all fields that are defined and yields (key, wvalue) tuples. Per default all
fields are returned, but it’s possible to limit that to some fields by providing the only parameter or to
exclude some using the exclude parameter. Both should be sets or tuples of field names.

set_ctx (ctx)
Reset the context of a node and all child nodes. Per default the parser will all generate nodes that have a
‘load’ context as it’s the most common one. This method is used in the parser to set assignment targets
and other nodes to a store context.

set_environment (environment)
Set the environment for all nodes.

84 Chapter 6. Extensions

Jinja Documentation (2.11.x), Release 2.11.2

set_lineno (lineno, override=False)
Set the line numbers of the node and children.

class jinja2.nodes.Expr
Baseclass for all expressions.

Node type Node

as_const (eval_ctx=None)
Return the value of the expression as constant or raise Impossible if this was not possible.

An EvalContext can be provided, if none is given a default context is created which requires the nodes
to have an attached environment.

Changed in version 2.4: the eval_ctx parameter was added.

can_assign ()
Check if it’s possible to assign something to this node.

class jinja2.nodes.BinExpr (left, right)
Baseclass for all binary expressions.

Node type Expr

class jinja2.nodes.Add (left, right)
Add the left to the right node.

Node type BinExpr

class jinja2.nodes.And (left, right)
Short circuited AND.

Node type BinExpr

class jinja2.nodes.Div (left, right)
Divides the left by the right node.

Node type BinExpr

class jinja2.nodes.FloorDiv (left, right)
Divides the left by the right node and truncates conver the result into an integer by truncating.

Node type BinExpr

class jinja2.nodes.Mod (left, right)
Left modulo right.

Node type BinExpr

class jinja2.nodes.Mul (left, right)
Multiplies the left with the right node.

Node type BinExpr

class jinja2.nodes.Or (left, right)
Short circuited OR.

Node type BinExpr

class jinja2.nodes.Pow (left, right)
Left to the power of right.

Node type BinExpr

class jinja2.nodes.Sub (left, right)
Subtract the right from the left node.

6.10. Extension API 85

Jinja Documentation (2.11.x), Release 2.11.2

Node type BinExpr

class jinja2.nodes.Call (node, args, kwargs, dyn_args, dyn_kwargs)
Calls an expression. args is a list of arguments, kwargs a list of keyword arguments (list of Keyword nodes),
and dyn_args and dyn_kwargs has to be either None or a node that is used as node for dynamic positional
(xrargs) or keyword (» xkwargs) arguments.

Node type Expr

class jinja2.nodes.Compare (expr, ops)
Compares an expression with some other expressions. ops must be a list of Operands.

Node type Expr

class jinja2.nodes.Concat (nodes)
Concatenates the list of expressions provided after converting them to unicode.

Node type Expr

class jinja2.nodes.CondExpr (test, exprl, expr2)
A conditional expression (inline if expression). ({{ foo if bar else baz }})

Node type Expr

class jinja2.nodes.ContextReference
Returns the current template context. It can be used like a Name node, with a ' load' ctx and will return the
current Context object.

Here an example that assigns the current template name to a variable named foo:

Assign (Name ('foo', ctx='store'),
Getattr (ContextReference (), 'name'))

This is basically equivalent to using the context function () decorator when using the high-level API,
which causes a reference to the context to be passed as the first argument to a function.

Node type Expr

class jinja2.nodes.DerivedContextReference
Return the current template context including locals. Behaves exactly like ContextRe ference, but includes
local variables, such as from a for loop.

New in version 2.11.
Node type Expr

class jinja2.nodes.EnvironmentAttribute (name)
Loads an attribute from the environment object. This is useful for extensions that want to call a callback stored
on the environment.

Node type Expr

class jinja2.nodes.ExtensionAttribute (identifier, name)
Returns the attribute of an extension bound to the environment. The identifier is the identifier of the
Extension.

This node is usually constructed by calling the at t r () method on an extension.
Node type Expr

class jinja2.nodes.Filter (node, name, args, kwargs, dyn_args, dyn_kwargs)
This node applies a filter on an expression. name is the name of the filter, the rest of the fields are the same as
for call.

86 Chapter 6. Extensions

Jinja Documentation (2.11.x), Release 2.11.2

If the node of a filter is None the contents of the last buffer are filtered. Buffers are created by macros and filter
blocks.

Node type Expr

class jinja2.nodes.Getattr (node, attr, ctx)
Get an attribute or item from an expression that is a ascii-only bytestring and prefer the attribute.

Node type Expr

class jinja2.nodes.Getitem (node, arg, ctx)
Get an attribute or item from an expression and prefer the item.

Node type Expr

class jinja2.nodes.ImportedName (importname)
If created with an import name the import name is returned on node access. For example
ImportedName ('cgi.escape') returns the escape function from the cgi module on evaluation. Imports
are optimized by the compiler so there is no need to assign them to local variables.

Node type Expr

class jinja2.nodes.InternalName (name)
An internal name in the compiler. You cannot create these nodes yourself but the parser provides a
free_identifier () method that creates a new identifier for you. This identifier is not available from
the template and is not threated specially by the compiler.

Node type Expr

class jinja2.nodes.Literal
Baseclass for literals.

Node type Expr

class jinja2.nodes.Const (value)
All constant values. The parser will return this node for simple constants such as 42 or "foo" but it can be
used to store more complex values such as lists too. Only constants with a safe representation (objects where
eval (repr (x)) == xistrue).

Node type Literal

class jinja2.nodes.Dict (items)
Any dict literal suchas {1: 2, 3: 4}. The items must be a list of Pai r nodes.

Node type Literal

class jinja2.nodes.List (items)
Any list literal suchas [1, 2, 3]

Node type Literal

class jinja2.nodes.TemplateData (data)
A constant template string.

Node type Literal

class jinja2.nodes.Tuple (items, ctx)
For loop unpacking and some other things like multiple arguments for subscripts. Like for Name ctx specifies if
the tuple is used for loading the names or storing.

Node type Literal

class jinja2.nodes.MarkSafe (expr)
Mark the wrapped expression as safe (wrap it as Markup).

6.10. Extension API 87

Jinja Documentation (2.11.x), Release 2.11.2

Node type Expr

class jinja2.nodes.MarkSafeIfAutoescape (expr)
Mark the wrapped expression as safe (wrap it as Markup) but only if autoescaping is active.

New in version 2.5.
Node type Expr

class jinja2.nodes.Name (name, ctx)
Looks up a name or stores a value in a name. The ctx of the node can be one of the following values:

e store: store a value in the name
¢ Joad: load that name

* param: like store but if the name was defined as function parameter.
Node type Expr
class jinja2.nodes.NSRef (name, attr)
Reference to a namespace value assignment

Node type Expr

class jinjaZ2.nodes.Slice (start, stop, step)
Represents a slice object. This must only be used as argument for Subscript.

Node type Expr

class jinja2.nodes.Test (node, name, args, kwargs, dyn_args, dyn_kwargs)
Applies a test on an expression. name is the name of the test, the rest of the fields are the same as for Cal1.

Node type Expr

class jinja2.nodes.UnaryExpr (node)
Baseclass for all unary expressions.

Node type Expr

class jinja2.nodes.Neg (node)
Make the expression negative.

Node type UnaryExpr

class jinja2.nodes.Not (node)
Negate the expression.

Node type UnaryExpr

class jinja2.nodes.Pos (node)
Make the expression positive (noop for most expressions)

Node type UnaryExpr

class jinja2.nodes.Helper
Nodes that exist in a specific context only.

Node type Node

class jinja2.nodes.Keyword (key, value)
A key, value pair for keyword arguments where key is a string.

Node type Helper

88 Chapter 6. Extensions

Jinja Documentation (2.11.x), Release 2.11.2

class jinjaZ2.nodes.Operand (op, expr)
Holds an operator and an expression. The following operators are available: %, x*, », +, —, //, /, eq, gt,
gteq, in, 1t, 1teq, ne, not, notin

Node type Helper

class jinja2.nodes.Pair (key, value)
A key, value pair for dicts.

Node type Helper

class jinja2.nodes.Stmt
Base node for all statements.

Node type Node

class jinja2.nodes.Assign (target, node)
Assigns an expression to a target.

Node type Stmt

class jinja2.nodes.AssignBlock (farget, filter, body)
Assigns a block to a target.

Node type Stmt

class jinja2.nodes.Block (name, body, scoped)
A node that represents a block.

Node type Stmt

class jinja2.nodes.Break
Break a loop.

Node type Stmt

class jinja2.nodes.CallBlock (call, args, defaults, body)
Like a macro without a name but a call instead. call is called with the unnamed macro as caller argument this
node holds.

Node type Stmt

class jinja2.nodes.Continue
Continue a loop.

Node type Stmt

class jinja2.nodes.EvalContextModifier (options)
Modifies the eval context. For each option that should be modified, a Ke yword has to be added to the opt ions
list.

Example to change the autoescape setting:

EvalContextModifier (options=[Keyword ('autoescape', Const (True))])

Node type Stmt

class jinja2.nodes.ScopedEvalContextModifier (options, body)
Modifies the eval context and reverts it later. Works exactly like EvalContextModifier but will only
modify the EvalContext for nodes in the body.

Node type EvalContextModifier

6.10. Extension API 89

Jinja Documentation (2.11.x), Release 2.11.2

class jinja2.nodes.ExprStmt (node)
A statement that evaluates an expression and discards the result.

Node type Stmt

class jinja2.nodes.Extends (template)
Represents an extends statement.

Node type Stmt

class jinja2.nodes.FilterBlock (body, filter)
Node for filter sections.

Node type Stmt

class jinja2.nodes.For (target, iter, body, else_, test, recursive)
The for loop. target is the target for the iteration (usually a Name or Tuple), iter the iterable. body is a list of
nodes that are used as loop-body, and else_ a list of nodes for the else block. If no else node exists it has to be
an empty list.

For filtered nodes an expression can be stored as test, otherwise None.
Node type Stmt

class jinja2.nodes.FromImport (template, names, with_context)
A node that represents the from import tag. It’s important to not pass unsafe names to the name attribute. The
compiler translates the attribute lookups directly into getattr calls and does not use the subscript callback of the
interface. As exported variables may not start with double underscores (which the parser asserts) this is not a
problem for regular Jinja code, but if this node is used in an extension extra care must be taken.

The list of names may contain tuples if aliases are wanted.
Node type Stmt

class jinja2.nodes.If (test, body, elif , else_)
If test is true, body is rendered, else else_.

Node type Stmt

class jinja2.nodes.Import (template, target, with_context)
A node that represents the import tag.

Node type Stmt

class jinja2.nodes.Include (template, with_context, ignore_missing)
A node that represents the include tag.

Node type Stmt

class jinja2.nodes.Macro (name, args, defaults, body)
A macro definition. name is the name of the macro, args a list of arguments and defaults a list of defaults if
there are any. body is a list of nodes for the macro body.

Node type Stmt

class jinja2.nodes.Output (nodes)
A node that holds multiple expressions which are then printed out. This is used both for the print statement and
the regular template data.

Node type Stmt

class jinja2.nodes.OverlayScope (context, body)
An overlay scope for extensions. This is a largely unoptimized scope that however can be used to introduce
completely arbitrary variables into a sub scope from a dictionary or dictionary like object. The context field has
to evaluate to a dictionary object.

920 Chapter 6. Extensions

Jinja Documentation (2.11.x), Release 2.11.2

Example usage:

OverlayScope (context=self.call_method('get_context'),
body=[...1)

New in version 2.10.
Node type Stmt

class jinja2.nodes.Scope (body)
An artificial scope.

Node type Stmt

class jinja2.nodes.With (targets, values, body)
Specific node for with statements. In older versions of Jinja the with statement was implemented on the base of
the Scope node instead.

New in version 2.9.3.
Node type Stmt

class jinja2.nodes.Template (body)
Node that represents a template. This must be the outermost node that is passed to the compiler.

Node type Node

exception jinja2.nodes.Impossible
Raised if the node could not perform a requested action.

6.10. Extension API 91

Jinja Documentation (2.11.x), Release 2.11.2

92 Chapter 6. Extensions

CHAPTER
SEVEN

INTEGRATION

Jinja provides some code for integration into other tools such as frameworks, the Babel library or your favourite editor
for fancy code highlighting. This is a brief description of whats included.

Files to help integration are available here.

7.1 Babel Integration

Jinja provides support for extracting gettext messages from templates via a Babel extractor entry point called
Jjinja2.ext.babel_extract. The Babel support is implemented as part of the i/8n Extension extension.

Gettext messages extracted from both trans tags and code expressions.

To extract gettext messages from templates, the project needs a Jinja section in its Babel extraction method mapping
file:

[jinja2: **x/templates/x*.html]
encoding = utf-8

The syntax related options of the Environment are also available as configuration values in the mapping file. For
example to tell the extraction that templates use % as line_statement_prefix you can use this code:

[jinja2: *+/templates/*x.html]
encoding = utf-8
line_statement_prefix = %

Extensions may also be defined by passing a comma separated list of import paths as extensions value. The 118n
extension is added automatically.

Changed in version 2.7: Until 2.7 template syntax errors were always ignored. This was done since many people
are dropping non template html files into the templates folder and it would randomly fail. The assumption was that
testsuites will catch syntax errors in templates anyways. If you don’t want that behavior you can add silent=false
to the settings and exceptions are propagated.

7.2 Pylons

With Pylons 0.9.7 onwards it’s incredible easy to integrate Jinja into a Pylons powered application.

The template engine is configured in config/environment.py. The configuration for Jinja looks something like that:

93

http://babel.pocoo.org/
https://github.com/pallets/jinja/tree/master/ext
http://babel.pocoo.org/
http://babel.pocoo.org/en/latest/messages.html#extraction-method-mapping-and-configuration
http://babel.pocoo.org/en/latest/messages.html#extraction-method-mapping-and-configuration
https://pylonshq.com/

Jinja Documentation (2.11.x), Release 2.11.2

from jinja2 import Environment, PackagelLoader
config['pylons.app_globals'].jinja_env = Environment (
loader=Packageloader ('yourapplication', 'templates')

)

After that you can render Jinja templates by using the render_jinja function from the pylons.templating module.

Additionally it’s a good idea to set the Pylons’ ¢ object into strict mode. Per default any attribute to not existing
attributes on the ¢ object return an empty string and not an undefined object. To change this just use this snippet and
add it into your config/environment.py:

’config['pylons.strictfc'] = True

7.3 TextMate

There is a bundle for TextMate that supports syntax highlighting for Jinja 1 and Jinja 2 for text based templates as well
as HTML. It also contains a few often used snippets.

7.4 Vim

A syntax plugin for Vim is available from the jinja repository. The script supports Jinja 1 and Jinja 2. Once installed,
two file types are available (jJinja and html jinja). The first one is for text-based templates and the second is for
HTML templates. For HTML documents, the plugin attempts to automatically detect Jinja syntax inside of existing
HTML documents.

If you are using a plugin manager like Pathogen, see the vim-jinja repository for installing in the bundle/ directory.

94 Chapter 7. Integration

https://github.com/mitsuhiko/jinja2-tmbundle
https://www.vim.org/
https://github.com/pallets/jinja/blob/master/ext/Vim/jinja.vim
https://github.com/tpope/vim-pathogen
https://github.com/mitsuhiko/vim-jinja

CHAPTER
EIGHT

SWITCHING FROM OTHER TEMPLATE ENGINES

If you have used a different template engine in the past and want to switch to Jinja here is a small guide that shows the
basic syntactic and semantic changes between some common, similar text template engines for Python.

8.1 Jinja 1

Jinja 2 is mostly compatible with Jinja 1 in terms of API usage and template syntax. The differences between Jinja 1
and 2 are explained in the following list.

8.1.1 API

Loaders Jinja 2 uses a different loader API. Because the internal representation of templates changed there is no
longer support for external caching systems such as memcached. The memory consumed by templates is com-
parable with regular Python modules now and external caching doesn’t give any advantage. If you have used a
custom loader in the past have a look at the new loader API.

Loading templates from strings In the past it was possible to generate templates from a string with the default
environment configuration by using jinja.from_string. Jinja 2 provides a Template class that can be used
to do the same, but with optional additional configuration.

Automatic unicode conversion Jinja 1 performed automatic conversion of bytestrings in a given encoding into uni-
code objects. This conversion is no longer implemented as it was inconsistent as most libraries are using the
regular Python ASCII bytestring to Unicode conversion. An application powered by Jinja 2 has to use unicode
internally everywhere or make sure that Jinja 2 only gets unicode strings passed.

i18n Jinja 1 used custom translators for internationalization. 118n is now available as Jinja 2 extension and uses a
simpler, more gettext friendly interface and has support for babel. For more details see i/8n Extension.

Internal methods Jinja 1 exposed a few internal methods on the environment object such as call_function,
get_attribute and others. While they were marked as being an internal method it was possible to override
them. Jinja 2 doesn’t have equivalent methods.

Sandbox Jinja 1 was running sandbox mode by default. Few applications actually used that feature so it became
optional in Jinja 2. For more details about the sandboxed execution see SandboxedEnvironment.

Context Jinja 1 had a stacked context as storage for variables passed to the environment. In Jinja 2 a similar object
exists but it doesn’t allow modifications nor is it a singleton. As inheritance is dynamic now multiple context
objects may exist during template evaluation.

Filters and Tests Filters and tests are regular functions now. It’s no longer necessary and allowed to use factory
functions.

95

Jinja Documentation (2.11.x), Release 2.11.2

8.1.2 Templates
Jinja 2 has mostly the same syntax as Jinja 1. What’s different is that macros require parentheses around the argument
list now.

Additionally Jinja 2 allows dynamic inheritance now and dynamic includes. The old helper function rendertemplate
is gone now, include can be used instead. Includes no longer import macros and variable assignments, for that the new
import tag is used. This concept is explained in the /mport documentation.

Another small change happened in the for-tag. The special loop variable doesn’t have a parent attribute, instead you
have to alias the loop yourself. See Accessing the parent Loop for more details.

8.2 Django

If you have previously worked with Django templates, you should find Jinja very familiar. In fact, most of the syntax
elements look and work the same.

However, Jinja provides some more syntax elements covered in the documentation and some work a bit different.

This section covers the template changes. As the API is fundamentally different we won’t cover it here.

8.2.1 Method Calls

In Django method calls work implicitly, while Jinja requires the explicit Python syntax. Thus this Django code:

{% for page in user.get_created_pages %}

% endfor %}

... looks like this in Jinja:

{% for page in user.get_created_pages() %}

{% endfor %}

This allows you to pass variables to the method, which is not possible in Django. This syntax is also used for macros.

8.2.2 Filter Arguments

Jinja provides more than one argument for filters. Also the syntax for argument passing is different. A template that
looks like this in Django:

’[{ items|join:", " }}

looks like this in Jinja:

’[{ items|join (', ') }}

It is a bit more verbose, but it allows different types of arguments - including variables - and more than one of them.

96 Chapter 8. Switching from other Template Engines

Jinja Documentation (2.11.x), Release 2.11.2

8.2.3 Tests

In addition to filters there also are tests you can perform using the is operator. Here are some examples:

{% if user.user_id is odd %}
{{ user.usernamele }} is odd

o3

% else %}
hmm. {{ user.usernamel|e }} looks pretty normal
{% endif %)

8.2.4 Loops

For loops work very similarly to Django, but notably the Jinja special variable for the loop context is called loop, not
forloop as in Django.

In addition, the Django empty argument is called else in Jinja. For example, the Django template:

{% for item in items ¥}
{{ item }}

% empty %}
No items'!

{% endfor %}

... looks like this in Jinja:

{% for item in items %}

{{ item }}
{% else %}
No items!

% endfor %}

8.2.5 Cycle

The {$ cycle %} tag does not exist in Jinja; however, you can achieve the same output by using the cycle method
on the loop context special variable.

The following Django template:

{% for user in users %}
<1li class="{% cycle 'odd' 'even' $}">{{ user }}</1li>
{% endfor %}

...looks like this in Jinja:

{% for user in users %}
<1li class="{{ loop.cycle('odd', 'even') }}">{{ user }}</1li>
% endfor %)

There is no equivalent of {$ cycle ... as variable %}.

8.3 Mako

If you have used Mako so far and want to switch to Jinja you can configure Jinja to look more like Mako:

8.3. Mako 97

Jinja Documentation (2.11.x), Release 2.11.2

env

= Environment ('<%', '$>', 'S{', '}', '<2doc>', '</%doc>', '%', "#4')

With an environment configured like that, Jinja should be able to interpret a small subset of Mako templates. Jinja
does not support embedded Python code, so you would have to move that out of the template. The syntax for defs
(which are called macros in Jinja) and template inheritance is different too. The following Mako template:

<%$inherit file="layout.html" />

<%def name="title()">Page Title</%def>

% for item in list:
S{itemj}</1i>

% endfor

Looks like this in Jinja with the above configuration:

<% extends "layout.html" 3$>
% block title %>Page Title<?% endblock &>
<% block body %>

% for item in list:
S{item}</1i>
% endfor

<% endblock %>

98 Chapter 8. Switching from other Template Engines

CHAPTER
NINE

TIPS AND TRICKS

This part of the documentation shows some tips and tricks for Jinja templates.

9.1 Null-Master Fallback

Jinja supports dynamic inheritance and does not distinguish between parent and child template as long as no extends tag
is visited. While this leads to the surprising behavior that everything before the first extends tag including whitespace
is printed out instead of being ignored, it can be used for a neat trick.

Usually child templates extend from one template that adds a basic HTML skeleton. However it’s possible to put the
extends tag into an if tag to only extend from the layout template if the standalone variable evaluates to false which it
does per default if it’s not defined. Additionally a very basic skeleton is added to the file so that if it’s indeed rendered
with standalone set to True a very basic HTML skeleton is added:

% if not standalone %£}{% extends 'master.html' $%}{% endif -9}
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<title>{% block title %}The Page Title{% endblock $}</title>

<link rel="stylesheet" href="style.css" type="text/css">
{% block body %}

<p>This is the page body.</p>
{% endblock %}

9.2 Alternating Rows

If you want to have different styles for each row of a table or list you can use the cycle method on the loop object:

{% for row in rows %}
<1li class="{{ loop.cycle('odd', 'even') }}">{{ row }}</1li>
{% endfor %}

cycle can take an unlimited amount of strings. Each time this tag is encountered the next item from the list is rendered.

9.3 Highlighting Active Menu ltems

Often you want to have a navigation bar with an active navigation item. This is really simple to achieve. Because
assignments outside of blocks in child templates are global and executed before the layout template is evaluated it’s
possible to define the active menu item in the child template:

99

Jinja Documentation (2.11.x), Release 2.11.2

o3

% extends "layout.html" %}

o3

¢ set active_page

"index" %}

The layout template can then access active_page. Additionally it makes sense to define a default for that variable:

o3

% set navigation_bar = [
('/'", '"index', 'Index'),
('/downloads/', 'downloads', 'Downloads'),
('/about/', 'about', 'About')

] -3}

o3

% set active_page

= active_page|default ('index') -%}
<ul id="navigation">
{% for href, id, caption in navigation_bar %}
<1li{% if id == active_page %} class="active"{% endif
¢}>{{ captionl|e }}</1li>
% endfor %}

9.4 Accessing the parent Loop

The special loop variable always points to the innermost loop. If it’s desired to have access to an outer loop it’s possible
to alias it:

<table>

{%$ for row in table %}
<tr>
{% set rowloop = loop %}

{% for cell in row %}
<td id="cell-{{ rowloop.index }}-{{ loop.index }}">{{ cell }}</td>
% endfor %}

</tr>
{% endfor %}
</table>

100 Chapter 9. Tips and Tricks

CHAPTER
TEN

FREQUENTLY ASKED QUESTIONS

This page answers some of the often asked questions about Jinja.

10.1 Why is it called Jinja?

The name Jinja was chosen because it’s the name of a Japanese temple and temple and template share a similar
pronunciation. It is not named after the city in Uganda.

10.2 How fast is it?

We really hate benchmarks especially since they don’t reflect much. The performance of a template depends on many
factors and you would have to benchmark different engines in different situations. The benchmarks from the testsuite
show that Jinja has a similar performance to Mako and is between 10 and 20 times faster than Django’s template
engine or Genshi. These numbers should be taken with tons of salt as the benchmarks that took these numbers only
test a few performance related situations such as looping. Generally speaking the performance of a template engine
doesn’t matter much as the usual bottleneck in a web application is either the database or the application code.

10.3 How Compatible is Jinja with Django?

The default syntax of Jinja matches Django syntax in many ways. However this similarity doesn’t mean that you can
use a Django template unmodified in Jinja. For example filter arguments use a function call syntax rather than a colon
to separate filter name and arguments. Additionally the extension interface in Jinja is fundamentally different from the
Django one which means that your custom tags won’t work any longer.

Generally speaking you will use much less custom extensions as the Jinja template system allows you to use a certain
subset of Python expressions which can replace most Django extensions. For example instead of using something like
this:

% load comments %}
{% get_latest_comments 10 as latest_comments %}
{% for comment in latest_comments %}

o3

% endfor %}

You will most likely provide an object with attributes to retrieve comments from the database:

101

https://www.makotemplates.org/

Jinja Documentation (2.11.x), Release 2.11.2

o3

% for comment in models.comments.latest (10) %}

{% endfor %}

Or directly provide the model for quick testing:

{% for comment in Comment.objects.order_by ('-pub_date') [:10] %}

% endfor %}

Please keep in mind that even though you may put such things into templates it still isn’t a good idea. Queries should
go into the view code and not the template!

10.4 Isn’t it a terrible idea to put Logic into Templates?

Without a doubt you should try to remove as much logic from templates as possible. But templates without any logic
mean that you have to do all the processing in the code which is boring and stupid. A template engine that does that
is shipped with Python and called string. Template. Comes without loops and if conditions and is by far the fastest
template engine you can get for Python.

So some amount of logic is required in templates to keep everyone happy. And Jinja leaves it pretty much to you how
much logic you want to put into templates. There are some restrictions in what you can do and what not.

Jinja neither allows you to put arbitrary Python code into templates nor does it allow all Python expressions. The oper-
ators are limited to the most common ones and more advanced expressions such as list comprehensions and generator
expressions are not supported. This keeps the template engine easier to maintain and templates more readable.

10.5 Why is Autoescaping not the Default?

There are multiple reasons why automatic escaping is not the default mode and also not the recommended one. While
automatic escaping of variables means that you will less likely have an XSS problem it also causes a huge amount of
extra processing in the template engine which can cause serious performance problems. As Python doesn’t provide a
way to mark strings as unsafe Jinja has to hack around that limitation by providing a custom string class (the Markup
string) that safely interacts with safe and unsafe strings.

With explicit escaping however the template engine doesn’t have to perform any safety checks on variables. Also a
human knows not to escape integers or strings that may never contain characters one has to escape or already HTML
markup. For example when iterating over a list over a table of integers and floats for a table of statistics the template
designer can omit the escaping because he knows that integers or floats don’t contain any unsafe parameters.

Additionally Jinja is a general purpose template engine and not only used for HTML/XML generation. For example
you may generate LaTeX, emails, CSS, JavaScript, or configuration files.

10.6 Why is the Context immutable?

When writing a context function () or something similar you may have noticed that the context tries to stop you
from modifying it. If you have managed to modify the context by using an internal context API you may have noticed
that changes in the context don’t seem to be visible in the template. The reason for this is that Jinja uses the context
only as primary data source for template variables for performance reasons.

If you want to modify the context write a function that returns a variable instead that one can assign to a variable by
using set:

102 Chapter 10. Frequently Asked Questions

Jinja Documentation (2.11.x), Release 2.11.2

’[% set comments = get_latest_comments (

oo
—

10.7 My tracebacks look weird. What’s happening?

If the debugsupport module is not compiled and you are using a Python installation without ctypes (Python 2.4 without
ctypes, Jython or Google’s AppEngine) Jinja is unable to provide correct debugging information and the traceback may
be incomplete. There is currently no good workaround for Jython or the AppEngine as ctypes is unavailable there and
it’s not possible to use the debugsupport extension.

If you are working in the Google AppEngine development server you can whitelist the ctypes module to restore the
tracebacks. This however won’t work in production environments:

import os

if os.environ.get ('SERVER_SOFTWARE', '').startswith('Dev'):
from google.appengine.tools.devappserver2.python import sandbox
sandbox._WHITE_LIST_C_MODULES += ['_ctypes', 'gestalt']

Credit for this snippet goes to Thomas Johansson

10.8 Why is there no Python 2.3/2.4/2.5/2.6/3.1/3.2/3.3 support?

Python 2.3 is missing a lot of features that are used heavily in Jinja. This decision was made as with the upcoming
Python 2.6 and 3.0 versions it becomes harder to maintain the code for older Python versions. If you really need
Python 2.3 support you either have to use Jinja 1 or other templating engines that still support 2.3.

Python 2.4/2.5/3.1/3.2 support was removed when we switched to supporting Python 2 and 3 by the same sourcecode
(without using 2to3). It was required to drop support because only Python 2.6/2.7 and >=3.3 support byte and unicode
literals in a way compatible to each other version. If you really need support for older Python 2 (or 3) versions, you
can just use Jinja 2.6.

Python 2.6/3.3 support was dropped because it got dropped in various upstream projects (such as wheel or pytest),
which would make it difficult to continue supporting it. Jinja 2.10 was the last version supporting Python 2.6/3.3.

10.9 My Macros are overridden by something

In some situations the Jinja scoping appears arbitrary:

layout.tmpl:

{% macro foo() $%}LAYOUT{% endmacro %}

{% block body %}{% endblock %}

child.tmpl:

{% extends 'layout.tmpl' %}

{% macro foo () %}CHILD{% endmacro %}

{% block body %}{{ foo() }}{% endblock %}

This will print LAYOUT in Jinja. This is a side effect of having the parent template evaluated after the child one. This
allows child templates passing information to the parent template. To avoid this issue rename the macro or variable in
the parent template to have an uncommon prefix.

10.7. My tracebacks look weird. What’s happening? 103

https://stackoverflow.com/questions/3086091/debug-jinja2-in-google-app-engine/3694434#3694434

Jinja Documentation (2.11.x), Release 2.11.2

104 Chapter 10. Frequently Asked Questions

CHAPTER
ELEVEN

CHANGELOG

11.1 Version 2.11.2

Released 2020-04-13

Fix a bug that caused callable objects with __getattr__, like Mock to be treated as a
contextfunction (). #1145

Update wordcount filter to trigger Undefined methods by wrapping the input in soft_unicode ().
#1160

Fix a hang when displaying tracebacks on Python 32-bit. #1162

Showing an undefined error for an object that raises Att ributeError on access doesn’t cause a recursion
error. #1177

Revert changes to PackagelLoader from 2.10 which removed the dependency on setuptools and
pkg_resources, and added limited support for namespace packages. The changes caused issues when using
Pytest. Due to the difficulty in supporting Python 2 and PEP 451 simultaneously, the changes are reverted until
3.0. #1182

Fix line numbers in error messages when newlines are stripped. #1178
The special namespace () assignment object in templates works in async environments. #1180
Fix whitespace being removed before tags in the middle of lines when 1strip_blocks is enabled. #1138

NativeEnvironment doesn’t evaluate intermediate strings during rendering. This prevents early evaluation
which could change the value of an expression. #1186

11.2 Version 2.11.1

Released 2020-01-30

Fix a bug that prevented looking up a key after an attribute ({ { data.items[1:] }}) in an async tem-
plate. #1141

11.3 Version 2.11.0

Released 2020-01-27

Drop support for Python 2.6, 3.3, and 3.4. This will be the last version to support Python 2.7 and 3.5.

Added anew ChainableUndefined class to support getitem and getattr on an undefined object. #977

105

https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock
https://github.com/pallets/jinja/issues/1145
https://github.com/pallets/jinja/pull/1160
https://github.com/pallets/jinja/issues/1162
https://github.com/pallets/jinja/issues/1177
https://www.python.org/dev/peps/pep-0451
https://github.com/pallets/jinja/pull/1182
https://github.com/pallets/jinja/pull/1178
https://github.com/pallets/jinja/issues/1180
https://github.com/pallets/jinja/issues/1138
https://github.com/pallets/jinja/issues/1186
https://github.com/pallets/jinja/issues/1141
https://github.com/pallets/jinja/issues/977

Jinja Documentation (2.11.x), Release 2.11.2

Allow {%+ syntax (with NOP behavior) when 1strip_blocks is disabled. #748
Added a default parameter for the map filter. #557

Exclude environment globals from meta. find undeclared variables ().#931
Float literals can be written with scientific notation, like 2.56e-3. #912, #922

Int and float literals can be written with the °_’ separator for legibility, like 12_345. #923
Fix a bug causing deadlocks in LRUCache.setdefault. #1000

The t rim filter takes an optional string of characters to trim. #828

A new jinja2.ext.debug extension adds a {$ debug %} tag to quickly dump the current context and
available filters and tests. #174, #798#983

Lexing templates with large amounts of whitespace is much faster. #857, #858

Parentheses around comparisons are preserved, so {{ 2 * (3 < 5) }} outputs “2” instead of “False”.
#755, #938

Add new boolean, false, true, integer and float tests. #824

The environment’s finalize function is only applied to the output of expressions (constant or not), not static
template data. #63

When providing multiple paths to FileSystemLoader, a template can have the same name as a directory.
#3821

Always return Unde f ined when omitting the else clauseina {{ 'foo' if bar }} expression, regard-
less of the environment’s unde fined class. Omitting the e1se clause is a valid shortcut and should not raise
an error when using St rictUndefined. #710, #1079

Fix behavior of loop control variables such as length and revindex0 when looping over a generator.
#ASO#T51#794, #993

Async support is only loaded the first time an environment enables it, in order to avoid a slow initial import.
#765

In async environments, the |map filter will await the filter call if needed. #913

In for loops that access loop attributes, the iterator is not advanced ahead of the current iteration unless
length, revindex, nextitem, or last are accessed. This makes it less likely to break groupby re-
sults. #555, #1101

In async environments, the 1oop attributes Length and revindex work for async iterators. #1101
In async environments, values from attribute/property access will be awaited if needed. #1101
PackageLoader doesn’t depend on setuptools or pkg_resources. #970

PackageLoader has limited support for PEP 420 namespace packages. #1097

Support os .PathLike objectsin FileSystemLoader and ModuleLoader. #870

NativeTemplate correctly handles quotes between expressions. "'{{ a }}', '{{ b }}'" renders
asthetuple ('1', '2'") rather than the string '1, 2'. #1020

Creating a NativeTemplate directly creates a NativeEnvironment instead of a default
Environment. #1091

After calling LRUCache. copy (), the copy’s queue methods point to the correct queue. #843

Compiling templates always writes UTF-8 instead of defaulting to the system encoding. #889

106

Chapter 11. Changelog

https://github.com/pallets/jinja/issues/748
https://github.com/pallets/jinja/issues/557
https://github.com/pallets/jinja/issues/931
https://github.com/pallets/jinja/issues/912
https://github.com/pallets/jinja/pull/922
https://github.com/pallets/jinja/pull/923
https://github.com/pallets/jinja/pull/1000
https://github.com/pallets/jinja/pull/828
https://github.com/pallets/jinja/issues/174
https://github.com/pallets/jinja/pull/798
https://github.com/pallets/jinja/pull/983
https://github.com/pallets/jinja/issues/857
https://github.com/pallets/jinja/pull/858
https://github.com/pallets/jinja/issues/755
https://github.com/pallets/jinja/pull/938
https://github.com/pallets/jinja/pull/824
https://github.com/pallets/jinja/issues/63
https://github.com/pallets/jinja/issues/821
https://github.com/pallets/jinja/issues/710
https://github.com/pallets/jinja/pull/1079
https://github.com/pallets/jinja/issues/459
https://github.com/pallets/jinja/issues/751
https://github.com/pallets/jinja/issues/794
https://github.com/pallets/jinja/pull/993
https://github.com/pallets/jinja/issues/765
https://github.com/pallets/jinja/pull/913
https://github.com/pallets/jinja/issues/555
https://github.com/pallets/jinja/pull/1101
https://github.com/pallets/jinja/pull/1101
https://github.com/pallets/jinja/pull/1101
https://github.com/pallets/jinja/issues/970
https://www.python.org/dev/peps/pep-0420
https://github.com/pallets/jinja/issues/1097
https://docs.python.org/3/library/os.html#os.PathLike
https://github.com/pallets/jinja/issues/870
https://github.com/pallets/jinja/issues/1020
https://github.com/pallets/jinja/issues/1091
https://github.com/pallets/jinja/issues/843
https://github.com/pallets/jinja/issues/889

Jinja Documentation (2.11.x), Release 2.11.2

* |wordwrap filter treats existing newlines as separate paragraphs to be wrapped individually, rather than creat-
ing short intermediate lines. #175

* Add break_on_hyphens parameter to | wordwrap filter. #550
¢ Cython compiled functions decorated as context functions will be passed the context. #1108

* When chained comparisons of constants are evaluated at compile time, the result follows Python’s behavior of
returning False if any comparison returns False, rather than only the last one. #1102

 Tracebacks for exceptions in templates show the correct line numbers and source for Python >=3.7. #1104
 Tracebacks for template syntax errors in Python 3 no longer show internal compiler frames. #763

* Add a DerivedContextReference node that can be used by extensions to get the current context and
local variables such as 1oop. #860

* Constant folding during compilation is applied to some node types that were previously overlooked. #733
* TemplateSyntaxError.source is not empty when raised from an included template. #457

* Passing an Undefined value to get_template (such as through extends, import, or include), raises
an UndefinedError consistently. select_template will show the undefined message in the list of
attempts rather than the empty string. #1037

e TemplateSyntaxError can be pickled. #1117

11.4 Version 2.10.3

Released 2019-10-04

* Fix a typo in Babel entry point in setup . py that was preventing installation.

11.5 Version 2.10.2

Released 2019-10-04
* Fix Python 3.7 deprecation warnings.
» Using range in the sandboxed environment uses xrange on Python 2 to avoid memory use. #933

* Use Python 3.7’s better traceback support to avoid a core dump when using debug builds of Python 3.7. #1050

11.6 Version 2.10.1

Released 2019-04-06

* SandboxedEnvironment securely handles st r. format_map in order to prevent code execution through
untrusted format strings. The sandbox already handled str . format.

11.7 Version 2.10

Released 2017-11-08

11.4. Version 2.10.3 107

https://github.com/pallets/jinja/issues/175
https://github.com/pallets/jinja/issues/550
https://github.com/pallets/jinja/pull/1108
https://github.com/pallets/jinja/issues/1102
https://github.com/pallets/jinja/issues/1104
https://github.com/pallets/jinja/issues/763
https://github.com/pallets/jinja/issues/860
https://github.com/pallets/jinja/issues/733
https://github.com/pallets/jinja/issues/457
https://github.com/pallets/jinja/issues/1037
https://github.com/pallets/jinja/pull/1117
https://github.com/pallets/jinja/issues/933
https://github.com/pallets/jinja/issues/1050

Jinj

a Documentation (2.11.x), Release 2.11.2

11

* Added a new extension node called OverlayScope which can be used to create an unoptimized scope that
will look up all variables from a derived context.

* Added an in test that works like the in operator. This can be used in combination with re ject and select.

Added previtem and nextitem to loop contexts, providing access to the previous/next item in the loop. If
such an item does not exist, the value is undefined.

* Added changed (xvalues) toloop contexts, providing an easy way of checking whether a value has changed
since the last iteration (or rather since the last call of the method)

* Added a namespace function that creates a special object which allows attribute assignment using the set
tag. This can be used to carry data across scopes, e.g. from a loop body to code that comes after the loop.

* Added a trimmed modifier to {$ trans %} to strip linebreaks and surrounding whitespace. Also added a
new policy to enable this for all t rans blocks.

e The randonm filter is no longer incorrectly constant folded and will produce a new random choice each time the
template is rendered. #478

¢ Added a unique filter. #469

* Added min and max filters. #475

¢ Added tests for all comparison operators: eq, ne, 1t, le, gt, ge. #6065

e import statement cannot end with a trailing comma. #617, #618

e indent filter will not indent blank lines by default. #685

* Add reverse argument for dictsort filter. #692

e Add aNativeEnvironment that renders templates to native Python types instead of strings. #708
* Added filter support to the block set tag. #489

* tojson filter marks output as safe to match documented behavior. #718

* Resolved a bug where getting debug locals for tracebacks could modify template context.

* Fixed a bug where having many {$ elif ... %} blocksresultedin a “too many levels of indentation” error.
These blocks now compile to native e1if ..: insteadofelse: if ..: #759

.8 Version 2.9.6

Released 2017-04-03

11

¢ Fixed custom context behavior in fast resolve mode #675

.9 Version 2.9.5

Released 2017-01-28

* Restored the original repr of the internal _GroupTuple because this caused issues with ansible and it was an
unintended change. #654

* Added back support for custom contexts that override the old resolve method since it was hard for people to
spot that this could cause a regression.

* Correctly use the buffer for the else block of for loops. This caused invalid syntax errors to be caused on 2.x and
completely wrong behavior on Python 3 #669

108

Chapter 11. Changelog

https://github.com/pallets/jinja/pull/478
https://github.com/pallets/jinja/pull/469
https://github.com/pallets/jinja/pull/475
https://github.com/pallets/jinja/pull/665
https://github.com/pallets/jinja/pull/617
https://github.com/pallets/jinja/pull/618
https://github.com/pallets/jinja/pull/685
https://github.com/pallets/jinja/pull/692
https://github.com/pallets/jinja/pull/708
https://github.com/pallets/jinja/pull/489
https://github.com/pallets/jinja/pull/718
https://github.com/pallets/jinja/issues/759
https://github.com/pallets/jinja/issues/675
https://github.com/pallets/jinja/issues/654
https://github.com/pallets/jinja/issues/669

Jinja Documentation (2.11.x), Release 2.11.2

* Resolve an issue where the {$ extends %} tag could not be used with async environments. #668

* Reduce memory footprint slightly by reducing our unicode database dump we use for identifier matching on
Python 3 #666

* Fixed autoescaping not working for macros in async compilation mode. #671

11.10 Version 2.9.4

Released 2017-01-10
* Solved some warnings for string literals. #646
* Increment the bytecode cache version which was not done due to an oversight before.
¢ Corrected bad code generation and scoping for filtered loops. #649

* Resolved an issue where top-level output silencing after known extend blocks could generate invalid code when
blocks where contained in if statements. #651

* Made the t runcate. leeway default configurable to improve compatibility with older templates.

11.11 Version 2.9.3

Released 2017-01-08

* Restored the use of blocks in macros to the extend that was possible before. On Python 3 it would render a
generator repr instead of the block contents. #645

* Set a consistent behavior for assigning of variables in inner scopes when the variable is also read from an outer
scope. This now sets the intended behavior in all situations however it does not restore the old behavior where
limited assignments to outer scopes was possible. For more information and a discussion see #64 1

* Resolved an issue where block scoped would not take advantage of the new scoping rules. In some more
exotic cases a variable overriden in a local scope would not make it into a block.

» Change the code generation of the with statement to be in line with the new scoping rules. This resolves some
unlikely bugs in edge cases. This also introduces a new internal Wit h node that can be used by extensions.

11.12 Version 2.9.2

Released 2017-01-08

* Fixed a regression that caused for loops to not be able to use the same variable for the target as well as source
iterator. #640

* Add support for a previously unknown behavior of macros. It used to be possible in some circumstances to
explicitly provide a caller argument to macros. While badly buggy and unintended it turns out that this is a
common case that gets copy pasted around. To not completely break backwards compatibility with the most
common cases it’s now possible to provide an explicit keyword argument for caller if it’s given an explicit
default. #642

11.10. Version 2.9.4 109

https://github.com/pallets/jinja/issues/668
https://github.com/pallets/jinja/issues/666
https://github.com/pallets/jinja/issues/671
https://github.com/pallets/jinja/issues/646
https://github.com/pallets/jinja/issues/649
https://github.com/pallets/jinja/issues/651
https://github.com/pallets/jinja/issues/645
https://github.com/pallets/jinja/issues/641
https://github.com/pallets/jinja/issues/640
https://github.com/pallets/jinja/issues/642

Jinj

a Documentation (2.11.x), Release 2.11.2

11

.13 Version 2.9.1

Released 2017-01-07

11

* Resolved a regression with call block scoping for macros. Nested caller blocks that used the same identifiers as
outer macros could refer to the wrong variable incorrectly.

.14 Version 2.9

Released 2017-01-07, codename Derivation

* Change cache key definition in environment. This fixes a performance regression introduced in 2.8.

* Added support for generator_stop on supported Python versions (Python 3.5 and later)
 Corrected a long standing issue with operator precedence of math operations not being what was expected.
* Added support for Python 3.6 async iterators through a new async mode.

* Added policies for filter defaults and similar things.

* Urlize now sets “rel noopener” by default.

* Support attribute fallback for old-style classes in 2.x.

 Support toplevel set statements in extend situations.

* Restored behavior of Cycler for Python 3 users.

* Subtraction now follows the same behavior as other operators on undefined values.

* map and friends will now give better error messages if you forgot to quote the parameter.

* Depend on MarkupSafe 0.23 or higher.

» Improved the t runcate filter to support better truncation in case the string is barely truncated at all.

* Change the logic for macro autoescaping to be based on the runtime autoescaping information at call time
instead of macro define time.

» Ported a modified version of the tojson filter from Flask to Jinja and hooked it up with the new policy
framework.

* Block sets are now marked safe by default.
* On Python 2 the asciification of ASCII strings can now be disabled with the compiler.ascii_str policy.

» Tests now no longer accept an arbitrary expression as first argument but a restricted one. This means that you
can now properly use multiple tests in one expression without extra parentheses. In particular you can now write
foo is divisibleby 2 or foo is divisibleby 3 asyou would expect.

» Greatly changed the scoping system to be more consistent with what template designers and developers expect.
There is now no more magic difference between the different include and import constructs. Context is now
always propagated the same way. The only remaining differences is the defaults for with context and
without context.

* The with and autoescape tags are now built-in.
* Added the new select_autoescape function which helps configuring better autoescaping easier.

* Fixed a runtime error in the sandbox when attributes of async generators were accessed.

110

Chapter 11. Changelog

Jinja Documentation (2.11.x), Release 2.11.2

11.15 Version 2.8.1

Released 2016-12-29
¢ Fixed the for_gs flag for urlencode.
* Fixed regression when applying int to non-string values.

* SECURITY: if the sandbox mode is used format expressions are now sandboxed with the same rules as in Jinja.
This solves various information leakage problems that can occur with format strings.

11.16 Version 2.8

Released 2015-07-26, codename Replacement
* Added target parameter to urlize function.
* Added support for followsymlinks to the file system loader.
* The truncate filter now counts the length.
¢ Added equalto filter that helps with select filters.
» Changed cache keys to use absolute file names if available instead of load names.
* Fixed loop length calculation for some iterators.

* Changed how Jinja enforces strings to be native strings in Python 2 to work when people break their default
encoding.

* Added make_logging_undefined which returns an undefined object that logs failures into a logger.
* If unmarshalling of cached data fails the template will be reloaded now.

* Implemented a block set tag.

* Default cache size was increased to 400 from a low 50.

* Fixed is number test to accept long integers in all Python versions.

* Changed is number to accept Decimal as a number.

e Added a check for default arguments followed by non-default arguments. This change makes {$ macro
m(x, y=1, z) %} asyntax error. The previous behavior for this code was broken anyway (resulting in the
default value being applied to vy).

* Add ability to use custom subclasses of Jjinja2.compiler.CodeGenerator and jinja2.
runtime.Context by adding two new attributes to the environment (code_generator_class and
context_class). #404

* Added support for context/environment/evalctx decorator functions on the finalize callback of the environment.
* Escape query strings for urlencode properly. Previously slashes were not escaped in that place.

* Add ‘base’ parameter to ‘int’ filter.

11.17 Version 2.7.3

Released 2014-06-06

* Security issue: Corrected the security fix for the cache folder. This fix was provided by RedHat.

11.15. Version 2.8.1 111

https://github.com/pallets/jinja/pull/404

Jinja Documentation (2.11.x), Release 2.11.2

11.18 Version 2.7.2

Released 2014-01-10

Prefix loader was not forwarding the locals properly to inner loaders. This is now fixed.

Security issue: Changed the default folder for the filesystem cache to be user specific and read and write pro-
tected on UNIX systems. See Debian bug 734747 for more information.

11.19 Version 2.7.1

Released 2013-08-07

Fixed a bug with call_filter not working properly on environment and context filters.

Fixed lack of Python 3 support for bytecode caches.

Reverted support for defining blocks in included templates as this broke existing templates for users.
Fixed some warnings with hashing of undefineds and nodes if Python is run with warnings for Python 3.
Added support for properly hashing undefined objects.

Fixed a bug with the title filter not working on already uppercase strings.

11.20 Version 2.7

Released 2013-05-20, codename Translation

Choice and prefix loaders now dispatch source and template lookup separately in order to work in combination
with module loaders as advertised.

Fixed filesizeformat.
Added a non-silent option for babel extraction.

Added urlencode filter that automatically quotes values for URL safe usage with utf-8 as only supported
encoding. If applications want to change this encoding they can override the filter.

Added keep-trailing-newline configuration to environments and templates to optionally preserve the
final trailing newline.

Accessing 1last on the loop context no longer causes the iterator to be consumed into a list.

Python requirement changed: 2.6, 2.7 or >= 3.3 are required now, supported by same source code, using the
“six” compatibility library.

Allow context function and other decorators to be appliedto__call__.
Added support for changing from newline to different signs in the wordwrap filter.
Added support for ignoring memcache errors silently.

Added support for keeping the trailing newline in templates.

Added finer grained support for stripping whitespace on the left side of blocks.
Added map, select, reject, selectattr and rejectattr filters.

Added support for 1oop . depth to figure out how deep inside a recursive loop the code is.

112

Chapter 11. Changelog

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=734747

Jinja Documentation (2.11.x), Release 2.11.2

Disabled py_compile for pypy and python 3.

11.21 Version 2.6

Released 2011-07-24, codename Convolution

Internal attributes now raise an internal attribute error now instead of returning an undefined. This fixes problems
when passing undefined objects to Python semantics expecting APIs.

Traceback support now works properly for PyPy. (Tested with 1.4)

Implemented operator intercepting for sandboxed environments. This allows application developers to disable
builtin operators for better security. (For instance limit the mathematical operators to actual integers instead of
longs)

Groupby filter now supports dotted notation for grouping by attributes of attributes.

Scoped blocks now properly treat toplevel assignments and imports. Previously an import suddenly “disap-
peared” in a scoped block.

Automatically detect newer Python interpreter versions before loading code from bytecode caches to prevent
segfaults on invalid opcodes. The segfault in earlier Jinja versions here was not a Jinja bug but a limitation in the
underlying Python interpreter. If you notice Jinja segfaulting in earlier versions after an upgrade of the Python
interpreter you don’t have to upgrade, it’s enough to flush the bytecode cache. This just no longer makes this
necessary, Jinja will automatically detect these cases now.

The sum filter can now sum up values by attribute. This is a backwards incompatible change. The argument
to the filter previously was the optional starting index which defaults to zero. This now became the second
argument to the function because it’s rarely used.

Like sum, sort now also makes it possible to order items by attribute.
Like sum and sort, join now also is able to join attributes of objects as string.
The internal eval context now has a reference to the environment.

Added a mapping test to see if an object is a dict or an object with a similar interface.

11.22 Version 2.5.5

Released 2010-10-18

Built documentation is no longer part of release.

11.23 Version 2.5.4

Released 2010-10-17

Fixed extensions not loading properly with overlays.

Work around a bug in cpython for the debugger that causes segfaults on 64bit big-endian architectures.

11.21. Version 2.6 113

Jinja Documentation (2.11.x), Release 2.11.2

11.24 Version 2.5.3

Released 2010-10-17

* Fixed an operator precedence error introduced in 2.5.2. Statements like “-foo.bar” had their implicit parentheses
applied around the first part of the expression (“(-foo).bar”) instead of the more correct “-(foo.bar)”.

11.25 Version 2.5.2

Released 2010-08-18

e Improved setup.py script to better work with assumptions people might still have from it
(-—with-speedups).

* Fixed a packaging error that excluded the new debug support.

11.26 Version 2.5.1

Released 2010-08-17

* Stoplteration exceptions raised by functions called from templates are now intercepted and converted to unde-
fineds. This solves a lot of debugging grief. (Stoplteration is used internally to abort template execution)

 Improved performance of macro calls slightly.
* Babel extraction can now properly extract newstyle gettext calls.

» Using the variable num in newstyle gettext for something else than the pluralize count will no longer raise a
KeyError.

¢ Removed builtin markup class and switched to markupsafe. For backwards compatibility the pure Python im-
plementation still exists but is pulled from markupsafe by the Jinja developers. The debug support went into a
separate feature called “debugsupport” and is disabled by default because it is only relevant for Python 2.4

* Fixed an issue with unary operators having the wrong precedence.

11.27 Version 2.5

Released 2010-05-29, codename Incoherence

* Improved the sort filter (should have worked like this for a long time) by adding support for case insensitive
searches.

* Fixed a bug for getattribute constant folding.

» Support for newstyle gettext translations which result in a nicer in-template user interface and more consistent
catalogs.

* It’s now possible to register extensions after an environment was created.

114 Chapter 11. Changelog

https://docs.python.org/3/library/exceptions.html#KeyError

Jinja Documentation (2.11.x), Release 2.11.2

11.28 Version 2.4.1

Released 2010-04-20

Fixed an error reporting bug for undefined.

11.29 Version 2.4

Released 2010-04-13, codename Correlation

The environment template loading functions now transparently pass through a template object if it was passed
to it. This makes it possible to import or extend from a template object that was passed to the template.

Added a ModuleLoader that can load templates from precompiled sources. The environment now features a
method to compile the templates from a configured loader into a zip file or folder.

The _speedups C extension now supports Python 3.
Added support for autoescaping toggling sections and support for evaluation contexts.

Extensions have a priority now.

11.30 Version 2.3.1

Released 2010-02-19

Fixed an error reporting bug on all python versions

Fixed an error reporting bug on Python 2.4

11.31 Version 2.3

Released 2010-02-10, codename 3000 Pythons

Fixes issue with code generator that causes unbound variables to be generated if set was used in if-blocks and
other small identifier problems.

Include tags are now able to select between multiple templates and take the first that exists, if a list of templates
is given.

Fixed a problem with having call blocks in outer scopes that have an argument that is also used as local variable
in an inner frame #360.

Greatly improved error message reporting #339

Implicit tuple expressions can no longer be totally empty. This change makes {$ if %} a syntax error now.
#364

Added support for translator comments if extracted via babel.
Added with-statement extension.

Experimental Python 3 support.

11.28. Version 2.4.1 115

https://github.com/pallets/jinja/issues/360
https://github.com/pallets/jinja/pull/339
https://github.com/pallets/jinja/issues/364

Jinja Documentation (2.11.x), Release 2.11.2

11.32 Version 2.2.1

Released 2009-09-14

Fixes some smaller problems for Jinja on Jython.

11.33 Version 2.2

Released 2009-09-13, codename Kong

Include statements can now be marked with ignore missing to skip non existing templates.

Priority of not raised. It’s now possible to write not foo in bar as an alias to foo not in bar like
in python. Previously the grammar required parentheses (not (foo in bar)) which was odd.

Fixed a bug that caused syntax errors when defining macros or using the {$ call %} tag inside loops.
Fixed a bug in the parser that made { { foo[1l, 2] }} impossible.

Made it possible to refer to names from outer scopes in included templates that were unused in the callers frame
#327

Fixed a bug that caused internal errors if names where used as iteration variable and regular variable after the
loop if that variable was unused before the loop. #331

Added support for optional scoped modifier to blocks.
Added support for line-comments.
Added the meta module.

Renamed (undocumented) attribute “overlay” to “overlayed” on the environment because it was clashing with a
method of the same name.

Speedup extension is now disabled by default.

11.34 Version 2.1.1

Released 2008-12-25

Fixed a translation error caused by looping over empty recursive loops.

11.35 Version 2.1

Released 2008-11-23, codename Yasuzo

Fixed a bug with nested loops and the special loop variable. Before the change an inner loop overwrote the loop
variable from the outer one after iteration.

Fixed a bug with the i18n extension that caused the explicit pluralization block to look up the wrong variable.
Fixed a limitation in the lexer that made { { foo.0.0 }} impossible.

Index based subscribing of variables with a constant value returns an undefined object now instead of raising an
index error. This was a bug caused by eager optimizing.

116

Chapter 11. Changelog

https://github.com/pallets/jinja/issues/327
https://github.com/pallets/jinja/pull/331

Jinja Documentation (2.11.x), Release 2.11.2

The 118n extension looks up foo.ugettext now followed by foo.gettext if an translations object is
installed. This makes dealing with custom translations classes easier.

Fixed a confusing behavior with conditional extending. loops were partially executed under some conditions
even though they were not part of a visible area.

Added sort filter that works like dictsort but for arbitrary sequences.

Fixed a bug with empty statements in macros.

Implemented a bytecode cache system.

The template context is now weakref-able

Inclusions and imports “with context” forward all variables now, not only the initial context.
Added a cycle helper called cycler.

Added a joining helper called joiner.

Added a compile_expression method to the environment that allows compiling of Jinja expressions into
callable Python objects.

Fixed an escaping bug in urlize

11.36 Version 2.0

Released 2008-07-17, codename Jinjavitus

The subscribing of objects (looking up attributes and items) changed from slightly. It’s now possible to give
attributes or items a higher priority by either using dot-notation lookup or the bracket syntax. This also changed
the AST slightly. Subscript is gone and was replaced with Getitem and Getattr.

Added support for preprocessing and token stream filtering for extensions. This would allow extensions to allow
simplified gettext calls in template data and something similar.

Added TemplateStream.dump.

Added missing support for implicit string literal concatenation. {{ "foo" "bar" }} is equivalent to {{
"foobar" }}

else is optional for conditional expressions. If not given it evaluates to false.
Improved error reporting for undefined values by providing a position.

filesizeformat filter uses decimal prefixes now per default and can be set to binary mode with the second
parameter.

Fixed bug in finalizer

11.37 Version 2.0rc1

Released 2008-06-09

First release of Jinja 2.
genindex

search

11.36. Version 2.0 117

Jinja Documentation (2.11.x), Release 2.11.2

118 Chapter 11. Changelog

PYTHON MODULE INDEX

jinja2.ext, 78
jinja2.nativetypes, 34
jinja2.nodes, 84
jinja2.sandbox, 31

119

Jinja Documentation (2.11.x), Release 2.11.2

120 Python Module Index

Symbols

__next__ () (jinja2.lexer.TokenStream method), 83

_fail _with_undefined_error ()
(jinja2.Undefined method), 14

_undefined_exception (jinja2.Undefined
tribute), 14

_undefined_hint (jinja2.Undefined attribute), 14

_undefined_name (jinja2.Undefined attribute), 14

_undefined_obj (jinja2.Undefined attribute), 14

A

abs () (built-in function), 57

Add (class in jinja2.nodes), 85

add_extension () (jinja2.Environment method), 9
And (class in jinja2.nodes), 85

as_const () (jinja2.nodes.Expr method), 85
Assign (class in jinja2.nodes), 89

AssignBlock (class in jinja2.nodes), 89

attr () (built-in function), 57

attr () (jinja2.ext.Extension method), 81
autoescape (jinja2.nodes.EvalContext attribute), 27

B

BaseLoader (class in jinja2), 17

batch () (built-in function), 57

BinExpr (class in jinja2.nodes), 85

Block (class in jinja2.nodes), 89

blocks (jinja2.runtime.Context attribute), 16

blocks (jinja2.Template attribute), 28

boolean () (built-in function), 66

Break (class in jinja2.nodes), 89

Bucket (class in jinja2.bccache), 20

bytecode_from_string () (jinja2.bccache.Bucket
method), 20

bytecode_to_string ()
method), 20

BytecodeCache (class in jinja2), 19

C

Call (class in jinja2.nodes), 86
call () (jinja2.runtime.Context method), 16

at-

(jinja2.bccache.Bucket

INDEX

call_binop () (jinja2.sandbox.SandboxedEnvironment
method), 31

call_method/() (jinja2.ext.Extension method), 81

call_unop () (jinja2.sandbox.SandboxedEnvironment
method), 31

callable () (built-in function), 66

CallBlock (class in jinja2.nodes), 89

can_assign () (jinja2.nodes.Expr method), 85

capitalize () (built-in function), 57

center () (built-in function), 57

ChainableUndefined (class in jinja2), 14

ChoiceLoader (class in jinja2), 19

clear () (jinja2.BytecodeCache method), 20

clear_caches () (in module jinja2), 23

code (jinja2.bccache.Bucket attribute), 20

code_generator_class (jinja2.Environment
attribute), 8

Compare (class in jinja2.nodes), 86

compile_expression|()
method), 9

compile_templates()
method), 9

Concat (class in jinja2.nodes), 86

CondExpr (class in jinja2.nodes), 86

Const (class in jinja2.nodes), 87

Context (class in jinja2.runtime), 16

context_class (jinja2.Environment attribute), 8

contextfilter () (in module jinja2), 23

contextfunction () (in module jinja2), 23

ContextReference (class in jinja2.nodes), 86

Continue (class in jinja2.nodes), 89

count_newlines () (in module jinja2.lexer), 84

current (jinja2.lexer. TokenStream attribute), 83

current () (cycler property), 69

cycler (built-in class), 69

D

DebugUndefined (class in jinja2), 15

default () (built-in function), 57

default_binop_table
(jinja2.sandbox.SandboxedEnvironment
tribute), 31

(jinja2.Environment

(jinja2.Environment

at-

121

Jinja Documentation (2.11.x), Release 2.11.2

default_unop_table
(jinja2.sandbox.SandboxedEnvironment
tribute), 31

defined () (built-in function), 66

DerivedContextReference (class injinja2.nodes),
86

Dict (class in jinja2.nodes), 87

dict () (built-in function), 69

DictLoader (class in jinja2), 18

dictsort () (built-in function), 58

disable_buffering()

at-

(jinja2.environment. TemplateStream method),
12

Div (class in jinja2.nodes), 85

divisibleby () (built-in function), 67

dump () (jinja2.environment. TemplateStream method),
12

dump_bytecode () (jinja2.BytecodeCache method),
20

E

enable_buffering()
(jinja2.environment. TemplateStream method),

12
Environment (class in jinja2), 6
environment (jinja2.bccache.Bucket attribute), 20
environment (jinja2.runtime.Context attribute), 16
EnvironmentAttribute (class in jinja2.nodes), 86
environmentfilter () (in module jinja2), 23
environmentfunction () (in module jinja2), 23
eos () (jinja2.lexer.TokenStream property), 83
eq () (built-in function), 67
escape () (built-in function), 58
escape () (in module jinja2), 23
escape () (inja2.Markup class method), 24
escaped () (built-in function), 67
eval_ctx (jinja2.runtime.Context attribute), 16
EvalContext (class in jinja2.nodes), 27
evalcontextfilter () (in module jinja2), 23
evalcontextfunction () (in module jinja2), 23
EvalContextModifier (class in jinja2.nodes), 89
even () (built-in function), 67
expect () (jinja2.lexer.TokenStream method), 83
exported_vars (jinja2.runtime.Context attribute), 16
Expr (class in jinja2.nodes), 85
ExprStmt (class in jinja2.nodes), 89
extend () (jinja2.Environment method), 10
Extends (class in jinja2.nodes), 90
Extension (class in jinja2.ext), 81
ExtensionAttribute (class in jinja2.nodes), 86
extract_translations() (jinja2.Environment
method), 76

F

fail () (jinja2.parser.Parser method), 82

false () (built-in function), 67

filename (jinja2.parser.Parser attribute), 82
filename (jinja2.Template attribute), 11

filename (jinja2.TemplateSyntaxError attribute), 25
filesizeformat () (built-in function), 58
FileSystemBytecodeCache (class in jinja2), 21
FileSystemLoader (class in jinja2), 18

Filter (class in jinja2.nodes), 86
filter_stream () (jinja2.ext.Extension method), 81
FilterBlock (class in jinja2.nodes), 90

filters (jinja2.Environment attribute), 8

find () (jinja2.nodes.Node method), 84

find_all () (jinja2.nodes.Node method), 84

find_referenced_templates () (in module
Jjinja2.meta), 29
find_undeclared_variables () (in module

Jjinja2.meta), 29
first () (built-in function), 58
float () (built-in function), 58, 67
FloorDiv (class in jinja2.nodes), 85
For (class in jinja2.nodes), 90
forceescape () (built-in function), 58
format () (built-in function), 58
free_identifier () (jinja2.parser.Parser method),
82
from_string () (jinja2.Environment method), 10
FromImport (class in jinja2.nodes), 90
FunctionLoader (class in jinja2), 18

G

ge () (built-in function), 67
generate () (jinja2.Template method), 11
generate_async () (jinja2. Template method), 12

get () (jinja2.MemcachedBytecodeCache.MinimalClientInterface

method), 21
get_all () (jinja2.runtime.Context method), 17
get_exported () (jinja2.runtime.Context method), 17
get_or_select_template () (jinja2.Environment
method), 10
get_source () (jinja2.BaseLoader method), 17
get_template () (finja2.Environment method), 10
Getattr (class in jinja2.nodes), 87
Getitem (class in jinja2.nodes), 87
globals (jinja2.Environment attribute), 8
globals (jinja2.Template attribute), 11
groupby () (built-in function), 59
gt () (built-in function), 67

H

Helper (class in jinja2.nodes), 88

122

Index

Jinja Documentation (2.11.x), Release 2.11.2

identifier (jinja2.ext.Extension attribute), 81

If (class in jinja2.nodes), 90

ImmutableSandboxedEnvironment
Jinja2.sandbox), 32

Import (class in jinja2.nodes), 90

ImportedName (class in jinja2.nodes), 87

Impossible, 91

in () (built-in function), 67

Include (class in jinja2.nodes), 90

indent () (built-in function), 59

install_gettext_callables ()
(jinja2.Environment method), 75

install gettext_translations ()
(jinja2.Environment method), 75

install _null_translations ()
(jinja2.Environment method), 75

int () (built-in function), 59

integer () (built-in function), 67

intercepted_binops

(class in

(jinja2.sandbox.SandboxedEnvironment at-
tribute), 31

intercepted_unops
(jinja2.sandbox.SandboxedEnvironment at-
tribute), 32

InternalName (class in jinja2.nodes), 87

is_internal_attribute () (in module

Jjinja2.sandbox), 32

is_safe_attribute ()
(jinja2.sandbox.SandboxedEnvironment
method), 32

is_safe_callable ()
(jinja2.sandbox.SandboxedEnvironment
method), 32

is_undefined () (in module jinja2), 23

is_up_to_date (jinja2.Template attribute), 28

iter_child_nodes () (jinja2.nodes.Node method),
84

iter_fields () (jinja2.nodes.Node method), 84

iterable () (built-in function), 67

J

jinja2.ext (module), 78
jinja2.nativetypes (module), 34

.nodes (module), 84
jinja2.sandbox (module), 31

join () (built-in function), 59

join_path () (jinja2.Environment method), 10
joiner (built-in class), 69

K

key (jinja2.bccache.Bucket attribute), 20
Keyword (class in jinja2.nodes), 88

jinja2

L

last () (built-in function), 60

le () (built-in function), 67

length () (built-in function), 60

lex () (jinja2.Environment method), 28

lineno (jinja2.lexer. Token attribute), 83

lineno (jinja2.TemplateSyntaxError attribute), 25

lipsum () (built-in function), 69

List (class in jinja2.nodes), 87

list () (built-in function), 60

list_templates () (jinja2.Environment method), 10

Literal (class in jinja2.nodes), 87

load () (jinja2.BaseLoader method), 18

load_bytecode () (jinja2.bccache.Bucket method),
20

load_bytecode ()
20

look () (jinja2.lexer. TokenStream method), 83

lower () (built-in function), 60, 67

1t () (built-in function), 67

M

Macro (class in jinja2.nodes), 90

make_logging_undefined () (in module jinja2),
15

make_module () (jinja2.Template method), 12

map () (built-in function), 60

mapping () (built-in function), 68

MarkSafe (class in jinja2.nodes), 87

MarkSafeIfAutoescape (class in jinja2.nodes), 88

Markup (class in jinja2), 24

max () (built-in function), 60

MemcachedBytecodeCache (class in jinja2), 21

(jinja2.BytecodeCache method),

MemcachedBytecodeCache.MinimalClientInterface

(class in jinja2), 21
message (jinja2.TemplateSyntaxError attribute), 25
min () (built-in function), 61
Mod (class in jinja2.nodes), 85
modifies_known_mutable () (in
Jjinja2.sandbox), 32
module () (jinja2.Template property), 12
ModulelLoader (class in jinja2), 19
Mul (class in jinja2.nodes), 85

N

Name (class in jinja2.nodes), 88

name (jinja2.parser.Parser attribute), 82

name (jinja2.runtime.Context attribute), 16

name (jinja2.Template attribute), 11

name (jinja2.TemplateSyntaxError attribute), 25
namespace (built-in class), 70
NativeEnvironment (class in jinja2.nativetypes), 36
NativeTemplate (class in jinja2.nativetypes), 36

module

Index

123

Jinja Documentation (2.11.x), Release 2.11.2

ne () (built-in function), 68

Neg (class in jinja2.nodes), 88

new_context () (jinja2.Template method), 28
next () (cycler method), 69

next_if () (jinja2.lexer.TokenStream method), 83
Node (class in jinja2.nodes), 84

none () (built-in function), 68

Not (class in jinja2.nodes), 88

NSRef (class in jinja2.nodes), 88

number () (built-in function), 68

O

odd () (built-in function), 68

Operand (class in jinja2.nodes), 88

or (class in jinja2.nodes), 85

output (class in jinja2.nodes), 90
overlay () (jinja2.Environment method), 8
OverlayScope (class in jinja2.nodes), 90

P

PackageLoader (class in jinja2), 18

Pair (class in jinja2.nodes), 89

parent (jinja2.runtime.Context attribute), 16
parse () (jinja2.Environment method), 28
parse () (jinja2.ext.Extension method), 82

parse_assign_target () (jinja2.parser.Parser
method), 82

parse_expression|() (jinja2.parser.Parser
method), 82

parse_statements () (jinja2.parser.Parser
method), 82

parse_tuple () (jinja2.parser.Parser method), 82
Parser (class in jinja2.parser), 82
policies (jinja2.Environment attribute), 8
Pos (class in jinja2.nodes), 88
Pow (class in jinja2.nodes), 85
pprint () (built-in function), 61
PrefixLoader (class in jinja2), 19
preprocess () (jinja2.Environment method), 28
preprocess () (jinja2.ext. Extension method), 82
push () (jinja2.lexer. TokenStream method), 83
Python Enhancement Proposals

PEP 420, 106

PEP 451, 105

R

random () (built-in function), 61

range () (built-in function), 68

reject () (built-in function), 61

rejectattr () (built-in function), 61

render () (finja2.nativetypes.NativeTemplate method),
36

render () (jinja2.Template method), 11

render_async () (jinja2.Template method), 11

replace () (built-in function), 61

reset () (cycler method), 69

reset () (jinja2.bccache.Bucket method), 20
resolve () (jinja2.runtime.Context method), 17
reverse () (built-in function), 62
root_render_func () (jinja2.Template method), 28
round () (built-in function), 62

S

safe () (built-in function), 62

sameas () (built-in function), 68

sandboxed (jinja2. Environment attribute), 8

SandboxedEnvironment (class in jinja2.sandbox),
31

Scope (class in jinja2.nodes), 91

ScopedEvalContextModifier
Jjinja2.nodes), 89

SecurityError, 32

select () (built-in function), 62

select_autoescape () (in module jinja2), 12

select_template () (jinja2.Environment method),
10

selectattr () (built-in function), 62

sequence () (built-in function), 68

(class in

set () (jinja2.MemcachedBytecodeCache.MinimalClientInterface

method), 21
set_ctx () (jinja2.nodes.Node method), 84
set_environment () (jinja2.nodes.Node method), 84
set_lineno () (jinja2.nodes.Node method), 84
shared (jinja2. Environment attribute), 8
skip () (jinja2.lexer.TokenStream method), 83
skip_1if () (jinja2.lexer.TokenStream method), 83
Slice (class in jinja2.nodes), 88
slice () (built-in function), 63
sort () (built-in function), 63
Stmt (class in jinja2.nodes), 89
stream (jinja2.parser. Parser attribute), 82
stream () (jinja2.Template method), 11
StrictUndefined (class in jinja2), 15
string () (built-in function), 64, 68
striptags () (built-in function), 64
striptags () (jinja2.Markup method), 24
Sub (class in jinja2.nodes), 85
sum () (built-in function), 64

T

tags (jinja2.ext.Extension attribute), 81
Template (class in jinja2), 11

Template (class in jinja2.nodes), 91
TemplateAssertionError, 25
TemplateData (class in jinja2.nodes), 87
TemplateError, 25
TemplateNotFound, 25
TemplateRuntimeError, 25

124

Index

Jinja Documentation (2.11.x), Release 2.11.2

TemplatesNotFound, 25
TemplateStream (class in jinja2.environment), 12
TemplateSyntaxError, 25

Test (class in jinja2.nodes), 88

test () (jinja2.lexer.Token method), 83
test_any () (jinja2.lexer. Token method), 84
tests (jinja2.Environment attribute), 8
title () (built-in function), 64

tojson () (built-in function), 64

Token (class in jinja2.lexer), 83
TokenStream (class in jinja2.lexer), 83
trim () (built-in function), 64

true () (built-in function), 68

truncate () (built-in function), 64

Tuple (class in jinja2.nodes), 87

type (jinja2.lexer. Token attribute), 83

U

UnaryExpr (class in jinja2.nodes), 88
Undefined (class in jinja2), 14
undefined () (built-in function), 68
undefined () (jinja2.Environment method), 8
UndefinedError, 25
unescape () (jinja2.Markup method), 24
uninstall_gettext_translations()
(jinja2.Environment method), 76
unique () (built-in function), 65
unsafe () (in module jinja2.sandbox), 32
upper () (built-in function), 65, 68
urlencode () (built-in function), 65
urlize () (built-in function), 65

\Y

value (jinja2.lexer. Token attribute), 83
vars (jinja2.runtime.Context attribute), 16
volatile (jinja2.nodes.EvalContext attribute), 27

W

With (class in jinja2.nodes), 91

wordcount () (built-in function), 65

wordwrap () (built-in function), 65

write_bytecode () (jinja2.bccache.Bucket method),
20

X

xmlattr () (built-in function), 66

Index 125

	Introduction
	Prerequisites
	Installation
	Basic API Usage

	API
	Basics
	Unicode
	High Level API
	Autoescaping
	Notes on Identifiers
	Undefined Types
	The Context
	Loaders
	Bytecode Cache
	Async Support
	Policies
	Utilities
	Exceptions
	Custom Filters
	Evaluation Context
	Custom Tests
	The Global Namespace
	Low Level API
	The Meta API

	Sandbox
	API
	Operator Intercepting

	Native Python Types
	Examples
	API

	Template Designer Documentation
	Synopsis
	Variables
	Filters
	Tests
	Comments
	Whitespace Control
	Escaping
	Line Statements
	Template Inheritance
	HTML Escaping
	List of Control Structures
	Import Context Behavior
	Expressions
	List of Builtin Filters
	List of Builtin Tests
	List of Global Functions
	Extensions
	Autoescape Overrides

	Extensions
	Adding Extensions
	i18n Extension
	Expression Statement
	Loop Controls
	With Statement
	Autoescape Extension
	Debug Extension
	Writing Extensions
	Example Extensions
	Extension API

	Integration
	Babel Integration
	Pylons
	TextMate
	Vim

	Switching from other Template Engines
	Jinja 1
	Django
	Mako

	Tips and Tricks
	Null-Master Fallback
	Alternating Rows
	Highlighting Active Menu Items
	Accessing the parent Loop

	Frequently Asked Questions
	Why is it called Jinja?
	How fast is it?
	How Compatible is Jinja with Django?
	Isn’t it a terrible idea to put Logic into Templates?
	Why is Autoescaping not the Default?
	Why is the Context immutable?
	My tracebacks look weird. What’s happening?
	Why is there no Python 2.3/2.4/2.5/2.6/3.1/3.2/3.3 support?
	My Macros are overridden by something

	Changelog
	Version 2.11.2
	Version 2.11.1
	Version 2.11.0
	Version 2.10.3
	Version 2.10.2
	Version 2.10.1
	Version 2.10
	Version 2.9.6
	Version 2.9.5
	Version 2.9.4
	Version 2.9.3
	Version 2.9.2
	Version 2.9.1
	Version 2.9
	Version 2.8.1
	Version 2.8
	Version 2.7.3
	Version 2.7.2
	Version 2.7.1
	Version 2.7
	Version 2.6
	Version 2.5.5
	Version 2.5.4
	Version 2.5.3
	Version 2.5.2
	Version 2.5.1
	Version 2.5
	Version 2.4.1
	Version 2.4
	Version 2.3.1
	Version 2.3
	Version 2.2.1
	Version 2.2
	Version 2.1.1
	Version 2.1
	Version 2.0
	Version 2.0rc1

	Python Module Index
	Index

